

# PLATO

# Alexis Brandeker Dept. of Astronomy

# PLATO facts

- Launch: December 2026, Ariane 6
- Orbit: L2
- Four years, extensions possible up to 8.5 years
- 24 Normal telescopes (25s)+ 2 Fast telescopes (2.5s, with filters)
- 4 detectors per normal camera (81 Mpix), 3 per fast camera
- In total 2 Gpix (Comparison Vera C. Rubin Obs.: 3.2 Gpix)
- Field of view ~ 49 deg x 49 deg



# Science goals

- O1. How do planets and planetary systems form and evolve?
- O2. Is our Solar System special or are there other systems like ours?
- O3. Are there potentially habitable planets?

# Mearuements and expected results

| Overall           | Scientific                                                                                                                                                                                                      | Measurements                                                                                                                                                                   | Expected results                                                                                                                                                                                                                                                                                               |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| scientific        | objectives                                                                                                                                                                                                      |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                |
| questions         |                                                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                |
| (see Section 2.1) |                                                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                |
| 01, 02, 03        | S1. Determine the<br>bulk properties<br>(mass, radius and<br>mean density) of<br>planets in a wide<br>range of systems,<br>including<br>terrestrial planets<br>in the habitable<br>zones of solar-like<br>stars | Photometry of ~15,000 (goal 20,000) solar-like stars with m <sub>v</sub> ≤ 11 and precision of 34 ppm in 1 hour.<br>RV spectroscopy for >100 (goal: 400) planets.              | A sample of >100 (goal:<br>400) exoplanets,<br>characterised for their<br>orbits, radii (accuracy<br>better than 3%) and<br>masses (accuracy ~10%)<br>over a wide range of<br>physical sizes and mean<br>densities, including >5<br>(goal: 30) (super-)Earths<br>in the habitable zone of<br>solar-like stars. |
| 01, 02, 03        | S2. Study how<br>planets and planet<br>systems evolve<br>with age                                                                                                                                               | Asteroseismology for > 5,000 stars with $m_v \le 11$<br>and photometric precision<br>of 34 ppm in 1 hour.                                                                      | A sample of >100 (goal:<br>400) bright planetary host<br>stars with accurate ages<br>(~10%) and planets with<br>accurate densities.                                                                                                                                                                            |
| 01, 02            | S3. Study the<br>typical<br>architectures of<br>planetary systems                                                                                                                                               | Photometry of >245,000<br>stars with m <sub>v</sub> ≤ 13.<br>RV spectroscopy for<br>>100 (goal: 400) planets,<br>and mass determination<br>from TTVs and upper<br>mass limits. | Planet distribution of<br>orbital parameters for<br>>4,000 (goal: 7,000) of<br>planetary systems<br>(with less accurate<br>masses); for >100<br>(goal: 400) planets,<br>with accurate masses<br>(~10%); for a sub-set of<br>planets, with TTV<br>determined masses.                                            |

|   | 01, 02, 03 | S4. Analyse the<br>correlation of<br>planetary<br>properties and<br>their frequencies<br>with stellar<br>parameters (e.g.,<br>stellar metallicity,<br>and stellar type) | Photometry of >15,000<br>(goal 20,000) stars with m <sub>v</sub><br>≤ 11 and precision of 34<br>ppm in 1 hour; observations<br>of 245,000 stars with m <sub>v</sub> ≤<br>13.<br>Observations of M dwarf<br>stars and stars across the<br>HR diagram.<br>RV spectroscopy for >100<br>(goal: 400) planets; mass<br>determination from TTVs<br>and upper mass limits. | Well-known stellar<br>parameters (age accuracy<br>~10%) for >5,000 stars,<br>leading to improved<br>stellar models.<br>Characterised host stars<br>of hundreds of planetary<br>systems. |
|---|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 01         | S5. Analyse the<br>dependence of the<br>frequency of                                                                                                                    | Photometry of >245,000 stars with $m_v \le 13$ .                                                                                                                                                                                                                                                                                                                   | A sample of >4,000<br>(goal: 7,000) detected<br>planetary transits from                                                                                                                 |
|   |            | terrestrial planets<br>on the<br>environment in<br>which they formed                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                    | different regions in the sky.                                                                                                                                                           |
| : | 01, 02, 03 | S6. Study the<br>internal structure<br>of stars and how it<br>evolves with age                                                                                          | Asteroseismology for<br>> 5,000 solar-like stars<br>with $m_v \le 11$ and<br>photometric precision of 34<br>ppm in 1 hour.                                                                                                                                                                                                                                         | A sample of >5,000<br>bright stars for which<br>asteroseismic modes can<br>be analysed with high<br>precision to improve<br>stellar models (age<br>accuracy ~10%).                      |
|   | 01, 03     | S7. Identify good<br>targets for<br>spectroscopic<br>measurements to<br>investigate<br>planetary<br>atmospheres                                                         | Photometry of ~1,000 stars<br>with mv ≤ 8 and precision<br>of 34 ppm in 1 hour.<br>Photometry of 5,000 M<br>dwarf stars with mv ≤ 16.                                                                                                                                                                                                                              | A sample of >10 (goal:<br>30) planets around bright<br>stars and >100 planetary<br>transits around M dwarfs<br>from different regions in<br>the sky.                                    |

# Long-duration phase field (LOPS2)

The PLATO Input Catalogue for this field contains more than 9000 dwarf and subgiant stars of spectral types from F5 to K7 with  $m_V < 11$  that will be observed with a random noise lower than 50 ppm in one hour, and more than 159,000 dwarf and subgiant stars of spectral types from F5 to K7 with  $m_V < 13$ .







## 2025-04-11





### 2025-05-03

#### High-gain antenna





#### 2025-05-09



