

LUNDS UNIVERSITET

Transits of white dwarfs with *PLATO*

Alexander Mustill Lund University <u>alexander.mustill@fysik.lu.se</u>

White dwarf planetary systems: discs and close-in planetesimals

- Spectroscopic signatures of accreted metals (~45% of WDs, Wilson *et al*. 2019) and possible planet (Gänsicke *et al*. 2019)
- Dust discs detected through IR excesses (~1.5% of WDs, Wilson *et al.* 2019), often variable
- Gas discs detected through Keplerian emission features (~0.1% of WDs, Gänsicke et al. 2007, Manser *et al.* 2020)
- Transits of disintegrating asteroids (Vanderburg *et al*. 2015, Vanderbosch *et al*. 2020) and planet (Vanderburg *et al*. 2020)
- Spectral signatures of non-transiting asteroids (1 known, Manser,..., Mustill *et al*. 2019)

White dwarfs tell us what extra-Solar planets and asteroids are made of

- $\sim 45\%$ of WDs show metal lines in their spectra
- Metals should sink on short timescales (d to Myr): accretion is ongoing or recent
- Leading candidate: pulverised asteroids/planets scattered close to the WD
- Composition gives us insight into planetary and asteroidal compositions and geochemistries beyond the Solar System (review: Xu *et al*, 2024)

Theoretical paradigm:

Inner system bodies (< few au) destroyed by RGB/AGB evolution.

Material is driven towards the WD on highly-eccentric orbits by large bodies in the outer system. It undergoes orbital circularisation, pulverisation and vaporisation, forms a close-in disc, and ultimately accretes onto the WD.

Reviews: Veras, Mustill & Bonsor 2024, Malamud 2024

First WD transits: WD1145+017

Vanderburg et al 2015

Periods ~4.5 hr, close to Roche limit

Transits are asymmetric: consistent with cometary geometry

Transits are deep: easy to detect even round faint stars

More, and more diverse, transiting systems

Long-period, likely eccentric, being circularised?

Gas giant planet

More complex features with 65:1 commensurability: maybe resonant structure or waves (cf Saturn's rings perturbed by satellites)

Cassini views of Saturn's rings

How common are WD transiting systems?

How would embedded bodies in discs affect accretion of disc onto WD?

Current occurrence rate estimates

Robert et al (2024): ~1% of polluted WDs observed by TESS exhibit transits

Consistent with 100% of polluted WDs hosting transiting objects close to Roche radius (=> 10s % of all WDs)

Earlier surveys: WASP (Faedi *et al* 2011), PANSTARRS (Fulton *et al* 2014), *K2* (van Sluijs & van Eylen 2018)

Time variability of transits

Variability of the original WD transiting system, WD1145+017, has reduced significantly

Consistent with a picture in which transits are caused by dust released from a parent body

=> just because a system wasn't showing transits in the past, doesn't mean it will not show them in the future

=> worth revisiting existing non-detections in future

PLATO prospects?

> 500 WD candidates with V<15 mag (Gaia Collaboration *et al.*, 2023)

Black = survey with *CHEOPS* by Morris *et al.* (2021)

Blue = rough LOPS2 field (don't take it too precisely)

=> probably few targets in LOPS2 field, but better prospects in later pointings?

Unlikely to observe many more systems to improve occurrence rates but might get lucky with a detection or two...