MSteSci1 pipeline Characterising M-dwarfs in the PLATO sample

Nikki Miller

Uppsala University, Sweden

nikki.miller@physics.uu.se | nikkimiller.space

M-dwarfs in PLATO

	Sample 1 (P1)	Sample 2 (P2) ⁵	Sample 4 (P4)	Sample 5 (P5)
Stars	$\geq 15\ 000$ (goal 20 000)	≥1000	≥ 5000	≥ 245 000
Spectral type	Dwarf and subgiants F5-K7	Dwarf and subgiants F5-K7	M dwarfs	Dwarf and subgiants F5-K7
Limit V	11	8.2	16	13
Random noise (ppm in 1 hour)	34	34	800	
Observation phase	LOP	LOP	LOP	LOP
Sampling time (s)				
Initial measurement	-	-	-	≤ 600
Centroid measurements	-	-	-	≤ 50 for 5% of targets
Transit oversampling			-	≤ 50 for 10% of targets
Imagettes	25	2.5	25	25 for > 9000 targets
Wavelength	500–1000 nm	500–1000 nm 300 stars with colour information	500–1000 nm	500–1000 nm

Table 3.2: Requirements of the PLATO stellar samples

PLATO Definition Study Report 2017

Working with M-dwarfs

Pros:

- ★ Small easier to detect (Earth-like) exoplanets using transits and RVs
- ★ Numerous most stars are M-dwarfs
- ★ Long lifetimes

Cons:

- ★ Intrinsically faint
- ★ Complex spectra dominated by molecular features
- ★ Often magnetically active, flares, etc.
- ★ Is the habitable zone even habitable (?)

PLATO stellar science module MSteSci1 for FGK stars

PLATO stellar science module MSteSci1 for FGK stars

For each band b, compare de-reddened observed magnitudes m_0

with a grid of *i* absolute model magnitudes M

distributed over a grid of *j* distance moduli μ ,

centered around the observed distance modulus μ_0

$$egin{aligned} \log \mathcal{L}_i \propto \sum_{b=1,N_b} \left[\sum_j -rac{(m_{b,0}-\mu_j-M_{b, ext{mod},i})^2}{2\delta m_{b,0}^2}
ight] + \log \sum_j \exp \left[-rac{(\mu_j-\mu_0)^2}{2\delta \mu_0^2}
ight] \ \mathcal{L}_i \propto \exp \left(\log \mathcal{L}_i - \max(\log \mathcal{L}_i)
ight) \end{aligned}$$

M-dwarfs in the H-band

Olander et al. (2025)

Spectroscopy module – components

• Procedures from FGK pipeline

- Sigma-clipping
- Radial velocity corrections
- Classical continuum normalisation
- Pseudo-continuum suppression
 - Grid of polynomials fitted to synthetic spectra over a range of Teff, log(g), [Fe/H]
- ANN trained on a random grid of synthetic spectra with 9 labels
 - "The Payne" algorithm (Ting+2019)
 - $\circ \quad \mathsf{T}_{\mathsf{eff}},\mathsf{log(g)},\mathsf{[Fe/H]},\mathsf{v}_{\mathsf{mic}},\mathsf{[O/Fe]},\mathsf{[Mg/Fe]},\mathsf{[Ca/Fe]},\mathsf{[Si/Fe]},\mathsf{[Ti/Fe]}$

Spectroscopy module – procedure

Comparison to other studies of M-dwarfs

- Current version
- Olander et al. (2025)
- Mann et al. (2015)
- Sarmento et al. (2021)
- Passegger et al. (2019)

Under construction...

Full integration into PLATO infrastructure

- ✓ Major restructure and improvements
- Bug fixes and unit tests
- ✓ Fast, class-based code
- New ANN with *more abundances*, vsini(?)
 - ✓ Random training grid generated with Turbospectrum from MARCS atmospheres

C, O, (Mg?), Al, Si, K, Ca, Ti, (Mn?), (Fe?), (Ni?)

- --- Adaptation of Payne scripts, and training the ANN
- Photometry upgrade to include *WISE photometry* and more metallicities
- End-to-end *validation* of whole pipeline and output parameters

Summary

- M-dwarfs present different challenges to FGK-type stars, so require different treatment
- Homogeneous pipeline for characterising *M-dwarfs* for PLATO is in active development
- Plenty to do before launch!

Thank you! Questions?

nikki.miller@physics.uu.se nikkimiller.space

