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* Local Lorentz symmetry is a fundamental symmetry of laws of physics.

 Time and space are similar enough to be mixed in Lorentz transformations,
and yet dissimilar enough to be clearly separated in the Lorentz signature.

* Nothing a priori wrong with that. But can we try to explain it on a deeper
level of analysis®?



Outline

 Part 1: a quantum gravity path integral based on spectral geometry.

* Gravity + free fermions and free bosons,

 Computable observables: effective dimension, expected volume and
number of degrees of freedom of the expected spacetime.

 Part 2: added interactions,
e Gravity + interacting fermions and bosons,

 Change of effective signature via a field fluctuations-induced disorder for the
geometry,

« —> Anderson localization of space into time, dynamical Wick Rotation.



Part 1:
A QG path integral based on spectral
geometry

Based on: M. Reitz, B. Soda, and A. Kempf, Phys. Rev. Lett. 131, 211501 (2023).



* |n the low-energy picture, a spacetime manifold is hosting matter, in the
form of quantum fields.

* Could this picture emerge from a “pre-geometric” regime?

 Could it emerge multiple times, at different energy scales, with different
spacetime dimensions?



* Challenge: to find a mathematical framework that can describe both
regimes:. geometric and pre-geometric.

 We choose path integral: need to make it independent of position basis
(with the goal of having a chance at leaving the geometric regime)
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e Signhature: Euclidean — mathematical tools available (Hawking-Gilkey formula).

 What is the action? Gravity, free fermions, free bosons: S — Sg -+ Sf -+ Sb



A quantum gravity path integral: gravity action

Signature: Euclidean — mathematical tools available (Hawking-Gilkey formula).

What is the action? Gravity, free fermions, free bosons: S — Sg -+ Sf -+ Sb

How do we formulate the S 7 P. B. Gilkey, J. Diff. Geom. 10, 601 (1975)

A 2
Gravitational action:N — 1 /d4m\/§ (A | AR—I— O(R2)>

1672 p 6

Numbe of eigenvalues of the Laplacian operator below the UV cutoff A



A quantum gravity path integral: gravity action

Signature: Euclidean — mathematical tools available (Hawking-Gilkey formula).

What is the action? Gravity, free fermions, free bosons: S — Sg -+ Sf -+ Sb

How do we formulate the S 7 P. B. Gilkey, J. Diff. Geom. 10, 601 (1975)
1 A2 A
Gravitational action: [N — > d493\/§ | R + O(Rz)
167 2 0
Numbe of eigenvalues of the Laplacian operator below the UV cutoff A 67T

Take Gilkey’s formula as the action for gravity: S g — ,uN
“gravitational action is the number of Laplacian’s eigenvalues on the manifold below a UV cutoft”

Basis independently:




Visual aid for the Gilkey formula

* N-dimensional compact manifold,
 Second order differential operator,

 There is a UV cutoff,

e -> The formula is valid.
* (In Euclidean signature)




Action for free fermions and bosons:
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Action for free fermions and bosons:

Gravity action: dimension of Laplacian operator’s Hilbert space
on a compact Riemannian manifold with a UV cutoff:

Free bosons: Klein-Gordon fields

Ny
1
=5 D Tr (A +m?)[9)i(g])
i=1
Free fermions: Dirac fields

Sy = / d*z\/q¥ (iT"D,) U

Total action: ' -

* |n the Laplacian eigenbasis:
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)\ = Laplacian’s
eigenvalue
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Field components in the Laplacian eigenbasis

A
* Full path integral: / = Z/ DA /D D@D@e b5

e Summing over: a) all possible Laplacian spectra (some are representable as manifolds, some are not),

b) all possible field values, given in the Laplacian eigenbasis,
c) all possible integer Hilbert space dimensions.

(With flat measures)

» Euclidean signature: thermal path integral, inverse temperature given by (5.
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Field components in the Laplacian eigenbasis

Summing over: a) all possible Laplacian spectra (some are representable as manifolds, some are not),

b) all possible field values, given in the Laplacian eigenbasis,
c) all possible integer Hilbert space dimensions.

(With flat measures)

Euclidean signature: thermal path integral, inverse temperature given by (.

Relatively easy to evaluate analytically (Gaussian fields, though weakly interacting via gravity):

: e ‘ o 6_5,u
/= C md_QeXp 2 C m ' where C e (27‘(‘) 2b ~ Bﬂﬁma:r;
i d ) A 1 2f
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Effective dimension of emergent spacetimes

* How do we get the effective dimension? From the probability distribution of eigenvalues:

) — Different effective dimension at
p()\z) / ;/D )\/D¢/D9/D9€ different energies for non-trivial

mass spectra.

« whenever the A’s eigenfunctions are dominated by the spacetime |
dimension, not by curvature, then Weyl’s scaling law says: ‘e ﬂs——*\

p(A) ~ AV | \

deff

* Probability distribution arising from the path integral, apply Weyl’s law:

S — 1018 1%01—116[ 1%01—1141 1%01—1121 1501—1101 11101—181 11101—[6[ 11101—141 11101—121 B
1 deff:d:Nf—Nb+2 A

 -> Effective dimension of spacetime = difference between number of fermion and boson species.

dlog(p(N))
A3 -2

e Valid for trivial mass spectrum. For nontrivial spectrum: see image, desf(A) = —2



Effective volume and number of DOF of emergent spacetimes
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* The expected number of eigenfunctions evaluates to: <N> — 5 B — 1+ 2C y
U



Effective volume and number of DOF of emergent spacetimes

7107 A4/2 —
* The expected number of eigenfunctions evaluates to: <N > — =1+ 2C :

B Ou d

* Recall: Spectral gap of the Laplacian is closely related to {2, with ¢ its largest geodesic distance and,
roughly, the volume V ~ ¢<.

—d/2

* Therefore, the effective volume is roughly V. Ff = <g>
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* The expected number of eigenfunctions evaluates to: <N > — =1+ 2C :

B Ou d

* Recall: Spectral gap of the Laplacian is closely related to {2, with ¢ its largest geodesic distance and,
roughly, the volume V ~ ¢<.

—d/2

* Therefore, the effective volume is roughly V. Ff = <g>

A
» The expected spectral gap is calculable: fix first eigenvalue to mass and (A2) = / dA2 Ao P(A2|N > 2).

m™m
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Effective volume and number of DOF of emergent spacetimes

{ Ny, Nf}veff = {30, 96}
{ Ny, Nf}veff = {30,64}
{ Ny, N¢tv,,, = 130,32}
{ Ny, Ny pn = {30,96}
{No, Ny}n = {30,64;

{Nb, Nyjn = {30, 32}

Dashed line = expected number of DOF, solid line = expected volume



Consistency check:

1
» Hawking & Gilkey formula showed that classically: N = 62 /d4$\/§<
T

* Consistency Check: N/V still constant
after quantization + corrections
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Results:

* Obtained dimensions and volumes of emergent spacetimes
-> depending on gravity & boson pull vs. fermion pressure,

* That balance depends on energy scale through mass spectrum,
yields energy-dependent spacetime dimensions & emergence,

* (Consistency check OK.

The low-energy picture of spacetime as a manifold, hosting matter in the form of quantum fields emerges
from a pregeometric regime:

* At different energy scales,
* With spacetime changing dimension.



Part 2:
Field interactions added to the QG path integral,
Anderson localization of Euclidean dimension(s)

Based on: B. Soda, In preparation



Interacting fermions and bosons In the path integral:

» Add a Yukawa coupling to the action: Sy = ¢ / dx (x)(x) d(z)

. Total action: S = Sg -+ Sf + S5y + Sy

Gilkey action Interaction
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» Add a Yukawa coupling to the action: Sy = ¢ / dx (x)(x) d(z)

. Total action: S = Sg -+ Sf + S5y + Sy

Gilkey action Interaction

Nf Nb N
* We write the interactions in the eigenbasis of the Laplacian: SY = Z Z Z C’kmg 6’,? 9% ¢?
a=1a=1k,m, =1

*

» With C coefficients being overlaps between Laplacian eigenstates: Cl,p = / Uz () U () ug(x) dp(x).
M

* We now proceed to integrate out the fields’ degrees of freedom in the full path integral with interacting fields.



Interacting fermions and bosons In the path integral:

* Integrating out the fields in the path integral serves as a source of disorder for the background geometry:
 Weak coupling: does not change the sign of the probability distribution for eigenvalues.

2= 3 i [ [ Lo ety ™ (Vi)

X eXP ASmt {)\k})] Asmt({)\k}) c R
» Strong coupling: changes the sign of the probability distribution for eigenvalues.

* As long as the coupling g is greater than a critical coupling.

Change of sign of eigenvalues indicates change of signature.
Is it Lorentz or a different combination of - and + signs?

Note: it is not surprising that critical amount
of disorder is necessary.
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P. Anderson, 1958: disorder localizes wavefunctions:

Image from: M. Filoche, S. Mayboroda, PNAS, Universal mechanism for Anderson and weak localization, 2012

In 1+1 and 2+1 dimensional systems any small disorder will do, in 3 and higher, a critical amount of disorder is hecessary.
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Presence of disorder changes the behaviour of wavefunctions:

from oscillatory to exponentially decaying.
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A toy model
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A toy model

0” 0” 0?
Assume we add disorder to only one dimension: F Viand ()

Ox? O0y? 022

Then, in that dimension (here, x) the wavefunctions will become localized.

| 0? 0? 0? i 0? 0? 0?
Schematically: F Viand () = - 92 o2 92

Laplacian op. -> D’Alembertian op.

Time iIs the localized dimension, while spatial dimensions are extended.



Yukawa is isotropic in the Euclidean signature, how can it single out one or more dimensions for localization?

At weak disorder, still isotropic, no localized dimension.
When we increase the amount of disorder, i.e. increase coupling g, a localization happens anisotropically.

Conjecture: the time-like direction is selected as a spontaneously broken symmetry.

If we increase disorder further, possibly more dimensions become localized.



On the Hartle-Hawking no-boundary proposal:

Picture credit: Quanta



Thank you for your attention!

St Mark Church, Zgreb



