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Emergent space, emergent time:  
a template, an example, some conceptual implications



• existence =/= fundamentality

something may exist simply because it features crucially in some (approximate) corner of our best models, 
even if it does not feature among the basic, starting/assumed ("fundamental") elements

• key elements in our (best?) theories of quantum gravity are not 
spatiotemporal (in the sense of our best models of space and time)

space and time are not fundamental but emergent (they exist but they are not fundamental)

• adopt methodological realism (also, simpler language), but not necessarily as metaphysical position

• naturalism: metaphysics inferred from physics

existence = playing a crucial (epistemically) role in our (best) models of the world

not platonism/pitagoreanism - blurred distinction between fictional and concrete, abstract 
and real, mental and material - what exist (with attributes/properties) is (at) the interface

objects are not represented by models, they are defined (and brought to existence) by models

• in fact, sympathetic to participatory and epistemic realism

also, reality acquires properties upon interacting (epistemically and empirically) with it

Preliminaries on perspective:

• emergence defined as oriented, binary theoretical relation, by robustness and novelty 
(and necessarily involves approximations) J. Butterfield



What is spacetime? what is to emerge? 



aspects of space and time

time, space

causality

localization (in time and space)

extension (in time and space) duration, length - geometry

signature

ordering (of events)

(possible) events

contiguity (connectedness) topology

all part of what we mean by space and time, all possibly to 
be recovered from more fundamental theoretical structures, 
all may have QG seeds

dimension
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• gravity = spacetime geometry

thus, 


spacetime itself is a 
dynamical, physical system

spacetime is a physical system
Main lessons from General Relativity (and modern gravitational physics):

• ingredients of the world: 4d smooth manifold and Lorentzian metric (= "spacetime"), 
plus several other (scalar, vector, ..) matter fields

<latexit sha1_base64="GFEr4OLxdJXsTtpaaAWe7WiG/Cw=">AAACF3icbVDLSsNAFJ34rPVVdelmsAgVQkhE0WXRjRuhgn1AU8pkOkmHTiZh5kYooX/hxl9x40IRt7rzb5w+Ftp64MKZc+5l7j1BKrgG1/22lpZXVtfWCxvFza3tnd3S3n5DJ5mirE4TkahWQDQTXLI6cBCslSpG4kCwZjC4HvvNB6Y0T+Q9DFPWiUkkecgpASN1S44vWAgVHPk2tk35aZ/7tu04jnn5MYE+JSK/HfmKR3046ZbKruNOgBeJNyNlNEOtW/ryewnNYiaBCqJ123NT6OREAaeCjYp+pllK6IBErG2oJDHTnXxy1wgfG6WHw0SZkoAn6u+JnMRaD+PAdI431fPeWPzPa2cQXnZyLtMMmKTTj8JMYEjwOCTc44pREENDCFXc7IppnyhCwURZNCF48ycvksap45077t1ZuXo1i6OADtERqiAPXaAqukE1VEcUPaJn9IrerCfrxXq3PqatS9Zs5gD9gfX5A/fanVo=</latexit>

(g , � , ..., M)

<latexit sha1_base64="HIRZOoZ59DJ97AT1LfNGwmzgtFE=">AAACIHicbVDLTgIxFO34RHyNunTTSExwQ2aIATcmRDcuMZFHwgDpdAo0dDpDHwYy4VPc+CtuXGiM7vRrLI+FgCdpenrOvbm9x48Zlcpxvq219Y3Nre3UTnp3b//g0D46rspIC0wqOGKRqPtIEkY5qSiqGKnHgqDQZ6Tm928nfu2RCEkj/qBGMWmGqMtph2KkjNS2i9124oXa43qcHV5AbzDQKICBbOXhNVz0gmHLvKYX12074+ScKeAqceckA+Yot+0vL4iwDglXmCEpG64Tq2aChKKYkXHa05LECPdRlzQM5SgksplMFxzDc6MEsBMJc7iCU/VvR4JCKUehbypDpHpy2ZuI/3kNrTpXzYTyWCvC8WxQRzOoIjhJCwZUEKzYyBCEBTV/hbiHBMLKZJo2IbjLK6+Saj7nFnKF+8tM6WYeRwqcgjOQBS4oghK4A2VQARg8gRfwBt6tZ+vV+rA+Z6Vr1rznBCzA+vkFrZuisQ==</latexit>

gµω(x) ds2 = gµω(x)dx
µdxω

(spatial distances, temporal duration, 
causal structure, curvature, .... )

interacting with other physical 
systems, via Einstein's eqns: Rµ⌫ [g(x)]� 1

2
R[g(x)] + ⇤gµ⌫(x) = 8⇡GNTµ⌫ [�(x), ...]

• take this description of spacetime (and mathematically/physically equivalent ones) as granted, for now



Emergent gravity vs emergent spacetime

important to distinguish two perspectives and physical possibilities:

• emergent gravity:

• gravity ~ spacetime curvature and/or dynamical aspects are emergent


• perturbative or non-perturbative aspects can be considered


• spacetime (usually, flat Minkowski spacetime) is fundamental 


• examples in condensed matter (eg analogue gravity) and perturbative quantum gravity
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Emergent gravity vs emergent spacetime

important to distinguish two perspectives and physical possibilities:

• emergent gravity:

• gravity ~ spacetime curvature and/or dynamical aspects are emergent


• perturbative or non-perturbative aspects can be considered


• spacetime (usually, flat Minkowski spacetime) is fundamental 


• examples in condensed matter (eg analogue gravity) and perturbative quantum gravity

• emergent spacetime:

• one or more basic spacetime structures (geometry, topology, causality, localization,..) are emergent


• gravity necessarily emergent too (since defined via spacetime structures)


• this includes flat spacetime and geometry

new (quantum) dofs?

discrete structures?

which "dynamics"?

pure algebraic data?



Background independence vs general covariance vs diffeomorphism invariance 
naive view: manifold + metric + fields defined on the manifoldspacetime =



Background independence vs general covariance vs diffeomorphism invariance 
naive view: manifold + metric + fields defined on the manifoldspacetime = why naive?



Background independence vs general covariance vs diffeomorphism invariance 

<latexit sha1_base64="cDd6gzB2W0oQ/N3HRLFv2YcXCKQ="></latexit>

Diff (M) =
�
f : M ! M , f 2 C1(M) , f�1 2 C1(M)

 
• the diffeomorphism group acts on geometric objects defined on the manifold, i.e. all tensor fields (metric + matter)

<latexit sha1_base64="DNsQcXnlyNKUfL+5EnrkoPU5SLo="></latexit>

'0 ⌘ f · ' = D(f⇤) · ' · f�1

irrep for
<latexit sha1_base64="VvuFcg14dRcCnnO1SmZcRjrPZoI=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRahgpQZqeiy6EIXLqrYB7RDyaRpG5rJDEmmUIb+iRsXirj1T9z5N2baWWjrgcDhnHu5J8ePOFPacb6t3Mrq2vpGfrOwtb2zu2fvHzRUGEtC6yTkoWz5WFHOBK1rpjltRZLiwOe06Y9uUr85plKxUDzpSUS9AA8E6zOCtZG6tn17X6qcdQKsh76fPE5Pu3bRKTszoGXiZqQIGWpd+6vTC0kcUKEJx0q1XSfSXoKlZoTTaaETKxphMsID2jZU4IAqL5kln6ITo/RQP5TmCY1m6u+NBAdKTQLfTKYR1aKXiv957Vj3r7yEiSjWVJD5oX7MkQ5RWgPqMUmJ5hNDMJHMZEVkiCUm2pRVMCW4i19eJo3zsntRdh4qxep1VkcejuAYSuDCJVThDmpQBwJjeIZXeLMS68V6tz7mozkr2zmEP7A+fwASdJKn</latexit>

GL(4,R) <latexit sha1_base64="AhEHfUET/ETonWMtjGcOfJYkXkc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJfROJsmQ2dlhZjYQlnyEFw+KePV7vPk3TpI9aLSgoajqprsrUoIb6/tfXmFtfWNzq7hd2tnd2z8oHx41TZJqyho0EYluR2iY4JI1LLeCtZVmGEeCtaLx3dxvTZg2PJGPdqpYGONQ8gGnaJ3U6k5QqxHvlSt+1V+A/CVBTiqQo94rf3b7CU1jJi0VaEwn8JUNM9SWU8FmpW5qmEI6xiHrOCoxZibMFufOyJlT+mSQaFfSkoX6cyLD2JhpHLnOGO3IrHpz8T+vk9rBTZhxqVLLJF0uGqSC2ITMfyd9rhm1YuoIUs3drYSOUCO1LqGSCyFYffkvaV5Ug6uq/3BZqd3mcRThBE7hHAK4hhrcQx0aQGEMT/ACr57ynr03733ZWvDymWP4Be/jG3ycj6o=</latexit>'-different- tensor field

• dynamics is specified by equations of motion, for given background structures
<latexit sha1_base64="oDixX4exG/EpCO+65figYZV65XA="></latexit>

F [{'} , ⌃] = 0

naive view: manifold + metric + fields defined on the manifoldspacetime = why naive?
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Diff (M) =
�
f : M ! M , f 2 C1(M) , f�1 2 C1(M)

 
• the diffeomorphism group acts on geometric objects defined on the manifold, i.e. all tensor fields (metric + matter)

<latexit sha1_base64="DNsQcXnlyNKUfL+5EnrkoPU5SLo="></latexit>

'0 ⌘ f · ' = D(f⇤) · ' · f�1

irrep for
<latexit sha1_base64="VvuFcg14dRcCnnO1SmZcRjrPZoI=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRahgpQZqeiy6EIXLqrYB7RDyaRpG5rJDEmmUIb+iRsXirj1T9z5N2baWWjrgcDhnHu5J8ePOFPacb6t3Mrq2vpGfrOwtb2zu2fvHzRUGEtC6yTkoWz5WFHOBK1rpjltRZLiwOe06Y9uUr85plKxUDzpSUS9AA8E6zOCtZG6tn17X6qcdQKsh76fPE5Pu3bRKTszoGXiZqQIGWpd+6vTC0kcUKEJx0q1XSfSXoKlZoTTaaETKxphMsID2jZU4IAqL5kln6ITo/RQP5TmCY1m6u+NBAdKTQLfTKYR1aKXiv957Vj3r7yEiSjWVJD5oX7MkQ5RWgPqMUmJ5hNDMJHMZEVkiCUm2pRVMCW4i19eJo3zsntRdh4qxep1VkcejuAYSuDCJVThDmpQBwJjeIZXeLMS68V6tz7mozkr2zmEP7A+fwASdJKn</latexit>

GL(4,R) <latexit sha1_base64="AhEHfUET/ETonWMtjGcOfJYkXkc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJfROJsmQ2dlhZjYQlnyEFw+KePV7vPk3TpI9aLSgoajqprsrUoIb6/tfXmFtfWNzq7hd2tnd2z8oHx41TZJqyho0EYluR2iY4JI1LLeCtZVmGEeCtaLx3dxvTZg2PJGPdqpYGONQ8gGnaJ3U6k5QqxHvlSt+1V+A/CVBTiqQo94rf3b7CU1jJi0VaEwn8JUNM9SWU8FmpW5qmEI6xiHrOCoxZibMFufOyJlT+mSQaFfSkoX6cyLD2JhpHLnOGO3IrHpz8T+vk9rBTZhxqVLLJF0uGqSC2ITMfyd9rhm1YuoIUs3drYSOUCO1LqGSCyFYffkvaV5Ug6uq/3BZqd3mcRThBE7hHAK4hhrcQx0aQGEMT/ACr57ynr03733ZWvDymWP4Be/jG3ycj6o=</latexit>'-different- tensor field

• dynamics is specified by equations of motion, for given background structures
<latexit sha1_base64="oDixX4exG/EpCO+65figYZV65XA="></latexit>

F [{'} , ⌃] = 0

<latexit sha1_base64="6ULLfhU0+EuG9jAnvczFAm56FjY="></latexit>

8 f 2 G F [{'} , ⌃] = 0 () F [{f · '} , f · ⌃] = 0

simply requirement that eqns are geometrically well-defined - any theory can be written as such

• Def: is (GENERALLY) COVARIANT under
<latexit sha1_base64="oDixX4exG/EpCO+65figYZV65XA="></latexit>

F [{'} , ⌃] = 0
<latexit sha1_base64="sQET9hgqOQUw3WLWHEQdUeV7ByY=">AAACCHicbVBNS8NAEN34WetX1KMHg0WoUEoiih6LCnoRKtgPaELZbCft0s0m7m6EEnr04l/x4kERr/4Eb/4bt20O2vpg4PHeDDPz/JhRqWz725ibX1hcWs6t5FfX1jc2za3tuowSQaBGIhaJpo8lMMqhpqhi0IwF4NBn0PD7FyO/8QBC0ojfqUEMXoi7nAaUYKWltrl35ZZcmfgSFNy7pUsaBEU3xKpHMEtvhodts2CX7TGsWeJkpIAyVNvml9uJSBICV4RhKVuOHSsvxUJRwmCYdxMJMSZ93IWWphyHIL10/MjQOtBKxwoioYsra6z+nkhxKOUg9HXn6EY57Y3E/7xWooIzL6U8ThRwMlkUJMxSkTVKxepQAUSxgSaYCKpvtUgPC0yUzi6vQ3CmX54l9aOyc1K2b48LlfMsjhzaRfuoiBx0iiroGlVRDRH0iJ7RK3oznowX4934mLTOGdnMDvoD4/MH75aZSQ==</latexit>

G ✓ Diff(M) if and only if

• Def:
<latexit sha1_base64="oDixX4exG/EpCO+65figYZV65XA="></latexit>

F [{'} , ⌃] = 0
<latexit sha1_base64="sQET9hgqOQUw3WLWHEQdUeV7ByY=">AAACCHicbVBNS8NAEN34WetX1KMHg0WoUEoiih6LCnoRKtgPaELZbCft0s0m7m6EEnr04l/x4kERr/4Eb/4bt20O2vpg4PHeDDPz/JhRqWz725ibX1hcWs6t5FfX1jc2za3tuowSQaBGIhaJpo8lMMqhpqhi0IwF4NBn0PD7FyO/8QBC0ojfqUEMXoi7nAaUYKWltrl35ZZcmfgSFNy7pUsaBEU3xKpHMEtvhodts2CX7TGsWeJkpIAyVNvml9uJSBICV4RhKVuOHSsvxUJRwmCYdxMJMSZ93IWWphyHIL10/MjQOtBKxwoioYsra6z+nkhxKOUg9HXn6EY57Y3E/7xWooIzL6U8ThRwMlkUJMxSkTVKxepQAUSxgSaYCKpvtUgPC0yUzi6vQ3CmX54l9aOyc1K2b48LlfMsjhzaRfuoiBx0iiroGlVRDRH0iJ7RK3oznowX4934mLTOGdnMDvoD4/MH75aZSQ==</latexit>

G ✓ Diff(M) if and only if
<latexit sha1_base64="6TGCf/TFkoyptPOJnt4OcVr3X8w=">AAACq3icjVFbb9MwFHbCbZRbGY+8WFRIewhVMoHgBWnapMEDQkOja0VPVJ04TmrNsTPbGaqi/jl+Am/8G5y0SLAhwZFsf/q+c3dWS2FdHP8Iwhs3b92+s3N3cO/+g4ePho93z6xuDOMTpqU2swwtl0LxiRNO8lltOFaZ5NPs/KjTp5fcWKHVZ7eqeVphqUQhGDpPLYbfoNAGpYSogAiEgugdXFw0mFOo0C0ZyvZ4DZIXbt7f0MIlmnopwIhy6WANUeQDT0VZ4YZKIXoLUfwrywetyi6w19AY/fUf+bs+WK6df/6v0mI4isdxb/Q6SLZgRLZ2shh+h1yzpuLKMYnWzpO4dmmLxgkm+XoAjeU1snMs+dxDhRW3advvek2feyanfmn+KEd79veIFitrV1XmPbsB7VWtI/+mzRtXvElboerGccU2hYpGUqdp93E0F4YzJ1ceIDPC90rZEg0y57934JeQXB35OjjbHyevxvGnl6ODw+06dshT8ozskYS8JgfkPTkhE8KCveBjMA1m4YvwNPwSwsY1DLYxT8gfFvKfWEXUWA==</latexit>

8 f 2 G F [{'} , ⌃] = 0 () F [{f · '} , ⌃] = 0

is (DIFFEOMORPHISM) INVARIANT under

<latexit sha1_base64="NOp63hHxnIKdmaRCkSmosaL0JYk="></latexit>

8 f 2 G F [{'} , ⌃] = 0 () F [{'} , f · ⌃] = 0equivalently:

• thus, full diffeomorphism invariance = only invariant background structures or no background structure

• in this sense: diffeomorphism invariance = background independence

naive view: manifold + metric + fields defined on the manifoldspacetime = why naive?



Background independence vs general covariance vs diffeomorphism invariance 

<latexit sha1_base64="cDd6gzB2W0oQ/N3HRLFv2YcXCKQ="></latexit>

Diff (M) =
�
f : M ! M , f 2 C1(M) , f�1 2 C1(M)

 
• the diffeomorphism group acts on geometric objects defined on the manifold, i.e. all tensor fields (metric + matter)

<latexit sha1_base64="DNsQcXnlyNKUfL+5EnrkoPU5SLo="></latexit>

'0 ⌘ f · ' = D(f⇤) · ' · f�1

irrep for
<latexit sha1_base64="VvuFcg14dRcCnnO1SmZcRjrPZoI=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRahgpQZqeiy6EIXLqrYB7RDyaRpG5rJDEmmUIb+iRsXirj1T9z5N2baWWjrgcDhnHu5J8ePOFPacb6t3Mrq2vpGfrOwtb2zu2fvHzRUGEtC6yTkoWz5WFHOBK1rpjltRZLiwOe06Y9uUr85plKxUDzpSUS9AA8E6zOCtZG6tn17X6qcdQKsh76fPE5Pu3bRKTszoGXiZqQIGWpd+6vTC0kcUKEJx0q1XSfSXoKlZoTTaaETKxphMsID2jZU4IAqL5kln6ITo/RQP5TmCY1m6u+NBAdKTQLfTKYR1aKXiv957Vj3r7yEiSjWVJD5oX7MkQ5RWgPqMUmJ5hNDMJHMZEVkiCUm2pRVMCW4i19eJo3zsntRdh4qxep1VkcejuAYSuDCJVThDmpQBwJjeIZXeLMS68V6tz7mozkr2zmEP7A+fwASdJKn</latexit>

GL(4,R) <latexit sha1_base64="AhEHfUET/ETonWMtjGcOfJYkXkc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJfROJsmQ2dlhZjYQlnyEFw+KePV7vPk3TpI9aLSgoajqprsrUoIb6/tfXmFtfWNzq7hd2tnd2z8oHx41TZJqyho0EYluR2iY4JI1LLeCtZVmGEeCtaLx3dxvTZg2PJGPdqpYGONQ8gGnaJ3U6k5QqxHvlSt+1V+A/CVBTiqQo94rf3b7CU1jJi0VaEwn8JUNM9SWU8FmpW5qmEI6xiHrOCoxZibMFufOyJlT+mSQaFfSkoX6cyLD2JhpHLnOGO3IrHpz8T+vk9rBTZhxqVLLJF0uGqSC2ITMfyd9rhm1YuoIUs3drYSOUCO1LqGSCyFYffkvaV5Ug6uq/3BZqd3mcRThBE7hHAK4hhrcQx0aQGEMT/ACr57ynr03733ZWvDymWP4Be/jG3ycj6o=</latexit>'-different- tensor field

• dynamics is specified by equations of motion, for given background structures
<latexit sha1_base64="oDixX4exG/EpCO+65figYZV65XA="></latexit>

F [{'} , ⌃] = 0

<latexit sha1_base64="6ULLfhU0+EuG9jAnvczFAm56FjY="></latexit>

8 f 2 G F [{'} , ⌃] = 0 () F [{f · '} , f · ⌃] = 0

simply requirement that eqns are geometrically well-defined - any theory can be written as such

• Def: is (GENERALLY) COVARIANT under
<latexit sha1_base64="oDixX4exG/EpCO+65figYZV65XA="></latexit>

F [{'} , ⌃] = 0
<latexit sha1_base64="sQET9hgqOQUw3WLWHEQdUeV7ByY=">AAACCHicbVBNS8NAEN34WetX1KMHg0WoUEoiih6LCnoRKtgPaELZbCft0s0m7m6EEnr04l/x4kERr/4Eb/4bt20O2vpg4PHeDDPz/JhRqWz725ibX1hcWs6t5FfX1jc2za3tuowSQaBGIhaJpo8lMMqhpqhi0IwF4NBn0PD7FyO/8QBC0ojfqUEMXoi7nAaUYKWltrl35ZZcmfgSFNy7pUsaBEU3xKpHMEtvhodts2CX7TGsWeJkpIAyVNvml9uJSBICV4RhKVuOHSsvxUJRwmCYdxMJMSZ93IWWphyHIL10/MjQOtBKxwoioYsra6z+nkhxKOUg9HXn6EY57Y3E/7xWooIzL6U8ThRwMlkUJMxSkTVKxepQAUSxgSaYCKpvtUgPC0yUzi6vQ3CmX54l9aOyc1K2b48LlfMsjhzaRfuoiBx0iiroGlVRDRH0iJ7RK3oznowX4934mLTOGdnMDvoD4/MH75aZSQ==</latexit>

G ✓ Diff(M) if and only if

• Def:
<latexit sha1_base64="oDixX4exG/EpCO+65figYZV65XA="></latexit>

F [{'} , ⌃] = 0
<latexit sha1_base64="sQET9hgqOQUw3WLWHEQdUeV7ByY=">AAACCHicbVBNS8NAEN34WetX1KMHg0WoUEoiih6LCnoRKtgPaELZbCft0s0m7m6EEnr04l/x4kERr/4Eb/4bt20O2vpg4PHeDDPz/JhRqWz725ibX1hcWs6t5FfX1jc2za3tuowSQaBGIhaJpo8lMMqhpqhi0IwF4NBn0PD7FyO/8QBC0ojfqUEMXoi7nAaUYKWltrl35ZZcmfgSFNy7pUsaBEU3xKpHMEtvhodts2CX7TGsWeJkpIAyVNvml9uJSBICV4RhKVuOHSsvxUJRwmCYdxMJMSZ93IWWphyHIL10/MjQOtBKxwoioYsra6z+nkhxKOUg9HXn6EY57Y3E/7xWooIzL6U8ThRwMlkUJMxSkTVKxepQAUSxgSaYCKpvtUgPC0yUzi6vQ3CmX54l9aOyc1K2b48LlfMsjhzaRfuoiBx0iiroGlVRDRH0iJ7RK3oznowX4934mLTOGdnMDvoD4/MH75aZSQ==</latexit>

G ✓ Diff(M) if and only if
<latexit sha1_base64="6TGCf/TFkoyptPOJnt4OcVr3X8w="></latexit>

8 f 2 G F [{'} , ⌃] = 0 () F [{f · '} , ⌃] = 0

is (DIFFEOMORPHISM) INVARIANT under

<latexit sha1_base64="NOp63hHxnIKdmaRCkSmosaL0JYk="></latexit>

8 f 2 G F [{'} , ⌃] = 0 () F [{'} , f · ⌃] = 0equivalently:

• thus, full diffeomorphism invariance = only invariant background structures or no background structure

• in this sense: diffeomorphism invariance = background independence

the differentiable manifold, its points, directions, atlases and 
associated coordinate systems are unphysical
spacetime is not the manifold, events are not manifold points

time is not a timelike direction on the manifold

space is not (the set of) spacelike directions on the manifold

in GR/QG, only diffeo-invariant quantities are physical 
(thus encode spacetime properties)

naive view: manifold + metric + fields defined on the manifoldspacetime = why naive?



Background independence vs general covariance vs diffeomorphism invariance 

<latexit sha1_base64="cDd6gzB2W0oQ/N3HRLFv2YcXCKQ="></latexit>

Diff (M) =
�
f : M ! M , f 2 C1(M) , f�1 2 C1(M)

 
• the diffeomorphism group acts on geometric objects defined on the manifold, i.e. all tensor fields (metric + matter)

<latexit sha1_base64="DNsQcXnlyNKUfL+5EnrkoPU5SLo="></latexit>

'0 ⌘ f · ' = D(f⇤) · ' · f�1

irrep for
<latexit sha1_base64="VvuFcg14dRcCnnO1SmZcRjrPZoI=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRahgpQZqeiy6EIXLqrYB7RDyaRpG5rJDEmmUIb+iRsXirj1T9z5N2baWWjrgcDhnHu5J8ePOFPacb6t3Mrq2vpGfrOwtb2zu2fvHzRUGEtC6yTkoWz5WFHOBK1rpjltRZLiwOe06Y9uUr85plKxUDzpSUS9AA8E6zOCtZG6tn17X6qcdQKsh76fPE5Pu3bRKTszoGXiZqQIGWpd+6vTC0kcUKEJx0q1XSfSXoKlZoTTaaETKxphMsID2jZU4IAqL5kln6ITo/RQP5TmCY1m6u+NBAdKTQLfTKYR1aKXiv957Vj3r7yEiSjWVJD5oX7MkQ5RWgPqMUmJ5hNDMJHMZEVkiCUm2pRVMCW4i19eJo3zsntRdh4qxep1VkcejuAYSuDCJVThDmpQBwJjeIZXeLMS68V6tz7mozkr2zmEP7A+fwASdJKn</latexit>

GL(4,R) <latexit sha1_base64="AhEHfUET/ETonWMtjGcOfJYkXkc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJfROJsmQ2dlhZjYQlnyEFw+KePV7vPk3TpI9aLSgoajqprsrUoIb6/tfXmFtfWNzq7hd2tnd2z8oHx41TZJqyho0EYluR2iY4JI1LLeCtZVmGEeCtaLx3dxvTZg2PJGPdqpYGONQ8gGnaJ3U6k5QqxHvlSt+1V+A/CVBTiqQo94rf3b7CU1jJi0VaEwn8JUNM9SWU8FmpW5qmEI6xiHrOCoxZibMFufOyJlT+mSQaFfSkoX6cyLD2JhpHLnOGO3IrHpz8T+vk9rBTZhxqVLLJF0uGqSC2ITMfyd9rhm1YuoIUs3drYSOUCO1LqGSCyFYffkvaV5Ug6uq/3BZqd3mcRThBE7hHAK4hhrcQx0aQGEMT/ACr57ynr03733ZWvDymWP4Be/jG3ycj6o=</latexit>'-different- tensor field

• dynamics is specified by equations of motion, for given background structures
<latexit sha1_base64="oDixX4exG/EpCO+65figYZV65XA="></latexit>

F [{'} , ⌃] = 0

<latexit sha1_base64="6ULLfhU0+EuG9jAnvczFAm56FjY="></latexit>

8 f 2 G F [{'} , ⌃] = 0 () F [{f · '} , f · ⌃] = 0

simply requirement that eqns are geometrically well-defined - any theory can be written as such

• Def: is (GENERALLY) COVARIANT under
<latexit sha1_base64="oDixX4exG/EpCO+65figYZV65XA="></latexit>

F [{'} , ⌃] = 0
<latexit sha1_base64="sQET9hgqOQUw3WLWHEQdUeV7ByY=">AAACCHicbVBNS8NAEN34WetX1KMHg0WoUEoiih6LCnoRKtgPaELZbCft0s0m7m6EEnr04l/x4kERr/4Eb/4bt20O2vpg4PHeDDPz/JhRqWz725ibX1hcWs6t5FfX1jc2za3tuowSQaBGIhaJpo8lMMqhpqhi0IwF4NBn0PD7FyO/8QBC0ojfqUEMXoi7nAaUYKWltrl35ZZcmfgSFNy7pUsaBEU3xKpHMEtvhodts2CX7TGsWeJkpIAyVNvml9uJSBICV4RhKVuOHSsvxUJRwmCYdxMJMSZ93IWWphyHIL10/MjQOtBKxwoioYsra6z+nkhxKOUg9HXn6EY57Y3E/7xWooIzL6U8ThRwMlkUJMxSkTVKxepQAUSxgSaYCKpvtUgPC0yUzi6vQ3CmX54l9aOyc1K2b48LlfMsjhzaRfuoiBx0iiroGlVRDRH0iJ7RK3oznowX4934mLTOGdnMDvoD4/MH75aZSQ==</latexit>

G ✓ Diff(M) if and only if

• Def:
<latexit sha1_base64="oDixX4exG/EpCO+65figYZV65XA=">AAACLHicbVDLSgMxFM34tr6qLt0Ei+BiKDOi6EYQBXFZ0arQDOVOmmmDmQfJnUIZ+kFu/BVBXCji1u8wbWfh60DI4Zx7Sc4JMyUNet6bMzU9Mzs3v7BYWVpeWV2rrm/cmDTXXDR5qlJ9F4IRSiaiiRKVuMu0gDhU4ja8Pxv5t32hjUyTaxxkIoihm8hIckArtatnLAbscVDF+ZApEWGLji9WUNYHnfUkZVp2e8iGzHWZy65kN4ZSC5h7zFyvXa15dW8M+pf4JamREo129Zl1Up7HIkGuwJiW72UYFKBRciWGFZYbkQG/h65oWZpALExQjMMO6Y5VOjRKtT0J0rH6faOA2JhBHNrJUTTz2xuJ/3mtHKOjoJBJlqNI+OShKFcUUzpqjnakFhzVwBLgWtq/Ut4DDRxtvxVbgv878l9ys1f3D+re5X7t5LSsY4FskW2yS3xySE7IBWmQJuHkgTyRV/LmPDovzrvzMRmdcsqdTfIDzucXXMmnlw==</latexit>

F [{'} , ⌃] = 0
<latexit sha1_base64="sQET9hgqOQUw3WLWHEQdUeV7ByY=">AAACCHicbVBNS8NAEN34WetX1KMHg0WoUEoiih6LCnoRKtgPaELZbCft0s0m7m6EEnr04l/x4kERr/4Eb/4bt20O2vpg4PHeDDPz/JhRqWz725ibX1hcWs6t5FfX1jc2za3tuowSQaBGIhaJpo8lMMqhpqhi0IwF4NBn0PD7FyO/8QBC0ojfqUEMXoi7nAaUYKWltrl35ZZcmfgSFNy7pUsaBEU3xKpHMEtvhodts2CX7TGsWeJkpIAyVNvml9uJSBICV4RhKVuOHSsvxUJRwmCYdxMJMSZ93IWWphyHIL10/MjQOtBKxwoioYsra6z+nkhxKOUg9HXn6EY57Y3E/7xWooIzL6U8ThRwMlkUJMxSkTVKxepQAUSxgSaYCKpvtUgPC0yUzi6vQ3CmX54l9aOyc1K2b48LlfMsjhzaRfuoiBx0iiroGlVRDRH0iJ7RK3oznowX4934mLTOGdnMDvoD4/MH75aZSQ==</latexit>

G ✓ Diff(M) if and only if
<latexit sha1_base64="6TGCf/TFkoyptPOJnt4OcVr3X8w="></latexit>

8 f 2 G F [{'} , ⌃] = 0 () F [{f · '} , ⌃] = 0

is (DIFFEOMORPHISM) INVARIANT under

<latexit sha1_base64="NOp63hHxnIKdmaRCkSmosaL0JYk="></latexit>

8 f 2 G F [{'} , ⌃] = 0 () F [{'} , f · ⌃] = 0equivalently:

• thus, full diffeomorphism invariance = only invariant background structures or no background structure

• in this sense: diffeomorphism invariance = background independence

the differentiable manifold, its points, directions, atlases and 
associated coordinate systems are unphysical
spacetime is not the manifold, events are not manifold points

time is not a timelike direction on the manifold

space is not (the set of) spacelike directions on the manifold

in GR/QG, only diffeo-invariant quantities are physical 
(thus encode spacetime properties)

<latexit sha1_base64="K3Ab1cT94xD5/Ph9f7yTnNLFuOE=">AAACGHicbZC7TsMwFIYdrqXcAowsFhVSWUqCQDAWWBiLRC9SE0WO67ZWHSf1paKK+hgsvAoLAwixduNtcNsMpeWXLP3+zjmyzx8mjErlOD/Wyura+sZmbiu/vbO7t28fHNZkrAUmVRyzWDRCJAmjnFQVVYw0EkFQFDJSD3v3k3p9QISkMX9Sw4T4Eepw2qYYKYMC+7wTpF6kPa5Hxecz6PX7GrXgbWDY3N0bIJF0qSGBXXBKzlRw2biZKYBMlcAee60Y64hwhRmSsuk6ifJTJBTFjIzynpYkQbiHOqRpLEcRkX46XWwETw1pwXYszOEKTun8RIoiKYdRaDojpLpysTaB/9WaWrVv/JTyRCvC8eyhtmZQxXCSEmxRQbBiQ2MQFtT8FeIuEggrk2XehOAurrxsahcl96rkPF4WyndZHDlwDE5AEbjgGpTBA6iAKsDgBbyBD/BpvVrv1pf1PWtdsbKZI/BH1vgXVU+fTw==</latexit>

gµ⌫(x) Aµ(x) '(x)fields themselves (as functions of manifold points) are unphysical objects
GR, as usually formulated, is written in a (useful) highly redundant  language

naive view: manifold + metric + fields defined on the manifoldspacetime = why naive?



Spacetime localization is relational 
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How do we describe physics relative to dynamical reference systems?

)

what is a reference system?  
As non-invariant/asymmetric under gauge symmetries as possible  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As many DoFs as there are indep. gauge directions  
(want to parametrize orbits with dynamical reference DoFs)
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 reference DoFs are gauge DoFs⇒

identify some dynamical fields as clock/rods and 
use their values to label evolution/localization of 
other dynamical fields

How do we describe physics relative to 
dynamical reference systems?
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reduction to coordinate frames: idealized clock/rods behaving like (global) test fields
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identify some dynamical fields as clock/rods and 
use their values to label evolution/localization of 
other dynamical fields

How do we describe physics relative to 
dynamical reference systems?

reduction to coordinate frames: idealized clock/rods behaving like (global) test fields

difficult to express/extract it in general GR case, even more in QG (quantum clocks & rods)

very difficult to define and compute such observables
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 reference DoFs are gauge DoFs⇒
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use their values to label evolution/localization of 
other dynamical fields

How do we describe physics relative to 
dynamical reference systems?

reduction to coordinate frames: idealized clock/rods behaving like (global) test fields

general point: physics is on superspace (space of field configurations), not manifold (only auxiliary structure)

difficult to express/extract it in general GR case, even more in QG (quantum clocks & rods)

very difficult to define and compute such observables
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R(g(x)),'a(x) ! R(g('a))example:

no known formulation of GR purely in terms of diffeomorphism invariant quantities

summary

do not expect to find manifold etc neither at fundamental QG level, nor in its effective description

to identify "spacetime = manifold" or "spacetime physics = physics on manifold" is approximation at best 
(corresponds to case in which set of four scalar fields behave like test fields 
covering manifold, and can be used as coordinates for manifold points)
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• signature 

• "internal" Lorentz symmetry
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background structures in GR and QG?

• GR has some diffeo-invariant background structures, which could be maintained in QG

• spacetime dimension  

• topology 

• signature 

• "internal" Lorentz symmetry

can they become dynamical and/or emergent too, in full QG?

indeed, we have examples of QG formalisms 
where they all become dynamical

any emergent spacetime scenario that assumes one or more of 
these ingredients may be less radical than hoped, but does not 
violate the background independence of GR 

emergent spacetime scenarios will be the more radical 
the more of these ingredients are dynamical & emergent



Steps to emergence



Identify fundamental structures/ontology + dynamics  

new (quantum) dofs?

discrete structures?

which "dynamics"?

pure algebraic data?

• starting point can be postulated or (partially) derived, from discretizing continuum structures, from 
"quantizing" classical entities, from analyzing notions of geometry/topology/causality


• it can be more or less radical, i.e. more or less close to GR and QFT and their structures


• same for fundamental dynamics


• quantum mechanics can be assumed, knowing that it requires novel interpretation and use anyway, 
or one can adopt generalised framework


• most steps required to go from fundamental structures/dynamics to emergent spacetime are same



"QG atoms"

geometric phase

???

??? • some form of "continuum limit", 
i.e. control over collective 
dynamics of (more and more of) all 
the dynamical dofs of the 
fundamental theory


• it cannot be expected to be unique 
- different continuum phases (with 
associated transitions)


• at least one phase should be 
"geometric", i.e. admit the 
reconstruction of a spatiotemporal 
description



"QG atoms"

geometric phase

???

???
• some form of "continuum limit", 

i.e. control over collective 
dynamics of (more and more of) all 
the dynamical dofs of the 
fundamental theory


• it cannot be expected to be unique 
- different continuum phases (with 
associated transitions)


• at least one phase should be 
"geometric", i.e. admit the 
reconstruction of a spatiotemporal 
description


• the limit and the control will be 
approximate only


• the need for approximation is not a 
nuisance, it is a constitutive 
feature of emergence



GR/Diff

QGR/Diff

"QG atoms"

geometric phase

???

???

• in (one of) the geometric phase(s), it will be possible 
to reconstruct a gravitational dynamics with the 
typical GR-like ingredients (fields and symmetries)


• this dynamics may still be in part or fully of quantum 
nature/origin


• if so, a further approximation will be needed to 
recover a classical GR-like description



continuum approximation (limit) vs classical approximation (limit)

conceptual difference

• classical approximation

• definition: quantum effects become negligible

• with respect to which observable? states can be semi-classical wrt different observables

• continuum approximation

• definition: limit of large # dofs - collective physics

non-commutativity (in general)

possibly related: collective physics may be inherently classical 
wrt some (eg macroscopic) observables

• example:

• examples: from molecular physics to hydrodynamics

example: BECs

quantum atomic physics

classical mechanics 
of few particles

hydrodynamics

theory of quantum fluids

N

h
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continuum approximation (limit) vs classical approximation (limit)

conceptual difference

• classical approximation

• definition: quantum effects become negligible

• with respect to which observable? states can be semi-classical wrt different observables

• continuum approximation

• definition: limit of large # dofs - collective physics

non-commutativity (in general)

possibly related: collective physics may be inherently classical 
wrt some (eg macroscopic) observables

• example:

• examples: from molecular physics to hydrodynamics

example: BECs
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continuum approximation (limit) vs classical approximation (limit)

conceptual difference

• classical approximation

• definition: quantum effects become negligible

• with respect to which observable? states can be semi-classical wrt different observables

• continuum approximation

• definition: limit of large # dofs - collective physics

non-commutativity (in general)

possibly related: collective physics may be inherently classical 
wrt some (eg macroscopic) observables

• example:

• examples: from molecular physics to hydrodynamics

example: BECs few QG d.o.f.s in classical approx.
(e.g. discrete/lattice gravity)

General Relativity
(continuum spacetime)

full Quantum Gravity

N

h

few QG d.o.f.s
(e.g. simple LQG spinnets)
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content of the theory has to be expressed in relational observables


• diffeomorphism redundancy will either not be present at all, or have 
to be removed to elucidate the actual physical content
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GR

/Diff

QGR

QGR

/Diff

"QG atoms"

geometric phase

???

???

• at any point, the truly physical, (approximately) local spatiotemporal 
content of the theory has to be expressed in relational observables


• diffeomorphism redundancy will either not be present at all, or have 
to be removed to elucidate the actual physical content

Important: 


these steps are not sequential 
nor all individually necessary
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• this scheme and most technical challenges and procedures 
apply equally both if the starting "non-spatiotemporal" 
structures are understood as physics (new ontology) and if they 
are understood as mere technical/mathematical tools/artefacts


• they can sensibly be understood as physical only if they lead to 
direct or indirect observational signatures (unless one can 
show/argue logical necessity)
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Observational signatures of fundamental structures

• this scheme and most technical challenges and procedures 
apply equally both if the starting "non-spatiotemporal" 
structures are understood as physics (new ontology) and if they 
are understood as mere technical/mathematical tools/artefacts


• they can sensibly be understood as physical only if they lead to 
direct or indirect observational signatures (unless one can 
show/argue logical necessity)

what sort of observational signatures?

• it depends on the nature of the fundamental structures, which which of the usual spacetime 
elements are emergent, what sort of approximations are needed for emergence, ....


• in principle, if spacetime is emergent we could expect deviations to the usual notions of:


• locality


• causality


• unitarity


• spacetime symmetries


• equivalence principle


• moreover, in an emergent spacetime scenario, we cannot assume/expect any separation of scales 
- quantum gravity effects can appear at low and high energies, small and large distances



Spacetime emergence from quantum gravity: 

an example



Tensorial Group Field Theories: 

quantum field theories OF spacetime ("atoms")

Lattice Quantum Gravity

Quantum Regge calculus

(Causal) Dynamical Triangulations

Path integral of discrete geometries: 
fixed simplicial lattice, sum over edge length variables
continuum limit via lattice refinement

Path integral of discrete geometries: 
sum over all possible (causal) simplicial lattices 
(fixed topology), fixed edge lengths
continuum limit via sum over finer and finer lattices

Z = lim�!1

Z
dµ({Le}) e�S�

R ({Le})

Z = lima!0

X

�

µ(a,�) e�S�
R ({Le=a})

Basic idea: covariant quantisation of 
gravity as sum over “discrete geometries”

Continuum spacetime manifold replaced 
by simplicial lattice; metric data encoded in 
edge lengths 

Gravitational action is discretised version 
of Einstein-Hilbert action (Regge action)
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TGFT
Simple GFT condensates as homogeneous continuum geometries (not encoding any topological information)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
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leading to the quantum equation of motion
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Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

•  simplest
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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⇥⇥
I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I
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) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

•  simplest
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Simple GFT condensates as homogeneous continuum geometries (not encoding any topological information)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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(in terms of SU(2) irreps)

+ additional "geometricity" constraints that can be imposed at dynamical level

GFT Fock space

3

triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L

2(G⇥d): F(Hv) =
L

1

V=0 sym

n⇣
H(1)

v ⌦H(2)
v ⌦ · · ·⌦H(V )

v

⌘o
, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h
'̂(~g) , '̂†(~g0)

i
= IG(~g,~g0)

⇥
'̂(~g) , '̂(~g0)

⇤
=

h
'̂
†(~g) , '̂†(~g0)

i
= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0

i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
'̂, '̂

†
�
.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:

O
 =(�,J

(ab)
(ij) ,◆i)

('̂†) =

0

@
Y

(i)

Z
[dgia]

1

A 
(�,J

(ab)
(ij) ,◆i)

(giag
�1
jb )

Y

i

'̂
†(gia), (4)

3

triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L

2(G⇥d): F(Hv) =
L

1

V=0 sym

n⇣
H(1)

v ⌦H(2)
v ⌦ · · ·⌦H(V )

v

⌘o
, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h
'̂(~g) , '̂†(~g0)

i
= IG(~g,~g0)

⇥
'̂(~g) , '̂(~g0)

⇤
=

h
'̂
†(~g) , '̂†(~g0)

i
= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0

i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
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to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
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e.g. area operator

e.g. volume operator
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"2nd quantized Loop Quantum Gravity"



Quantum states of many quantum tetrahedra

• full Hilbert space (arbitrary number of (connected or disconnected) tetrahedra):
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quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
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2(G⇥d): F(Hv) =
L

1

V=0 sym

n⇣
H(1)

v ⌦H(2)
v ⌦ · · ·⌦H(V )

v

⌘o
, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
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In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =
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Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
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In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L

2(G⇥d): F(Hv) =
L

1

V=0 sym

n⇣
H(1)

v ⌦H(2)
v ⌦ · · ·⌦H(V )

v

⌘o
, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h
'̂(~g) , '̂†(~g0)

i
= IG(~g,~g0)

⇥
'̂(~g) , '̂(~g0)

⇤
=

h
'̂
†(~g) , '̂†(~g0)

i
= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0

i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
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Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
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to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
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liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
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Quantum states of many quantum tetrahedra

• full Hilbert space (arbitrary number of (connected or disconnected) tetrahedra):

GFT Fock space
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In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.
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G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
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tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
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L
Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
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Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.
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appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
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Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
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Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L
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In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
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Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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gluing 
(entangling edge dof)

maximally entangled state 
of edge degrees of freedom

Hilbert space 
for V open vertices

Hilbert space
for graph Ȗ

Spin network states arising from the entanglement of individual vertices (fundamental excitations of the GFT field):

SPIN NETWORK FORMALISM FOR QUANTUM SPACETIME - GROUP FIELD THEORY PERSPECTIVE

link state

internal links 
of combinatorial pattern Ȗ

Ȗ

maximal entanglementmany- body wave-function 
for V open vertices

1111

• gluing quantum tetrahedra with entanglement

TGFT as a field theory of simplicial geometry

Gluing tetrahedra = discrete space connectivity = entanglement between “atoms of space”

LQG: space(time) from entangled states of quantum geometry

a

b

Entanglement of a Wilson line

in the Hilbert space decomposition the Wilson loop pure state reads

=
1p

2j + 1

2j+1X

c=1

hU |�1, j, a, ci hU |�2, j, c, bi
c

{|�, j, a, ci}, {|�, j, c, bi} orthonormal sets in H�1 , H�2

|�, j, a, bi = 1p
2j + 1

2j+1X

c=1

|�, j, a, ci ⌦ |�, j, c, bi

w/

define the reduced density matrix ⇢1 = Tr2[|�, j, a, bih�, j, a, b|]

S(�1) = �Tr[⇢1 log ⇢1] = log(2j + 1)

entanglement entropy of the wilson line

maximally mixed state

LQG structural level:

Donnelly 2012

gravity as a lattice gauge theory on a superposition of SU(2)/SL(2,C)  spin-network graphs 

diffeos compatible definition of entanglement: localisation 
and boundary charges — holographic dualities?

=> space geometry from pre-geometry, ent & coarse graining 

 (study of continuum limit) Girelli Livine 05, Livine Terno 2005-08

Charles Livine 2016, GC Mele, Vitale, Oriti

Delcamp Dittrich Riello, Geiller 16-17

Freidel Donnelly 16

Area law for entanglement entropy as a signature of good semiclassical behaviour:

Bianchi Guglielmon Hackll Yokomizo 16
 GC Rovelli Haggard Riello Ruggiero 14-15, Hamma Hung Marciano Zhang 15

Bianchi Myers 2012

 GC Anzà 16, Han et al. 16

=>

& BH entropy: Rovelli, Perez, de Lorenzo, Smerlak, Husain, Bodendorfer, 

Oriti, Pranzetti Sindoni … \infty

Dittrich, Bahr, Steinhaus, Martin-Benito...

Freidel Perez Pranzetti 16

-

-

Forming extended structures: gluing building blocks ——-> states on connected graphs/simplicial complexes

g

g

g

g

1

2

3

4

generic quantum state: collection of spin network vertices (incl. glued ones) or tetrahedra (incl. glued ones)

Quantization of Systems with Constraints
Two dynamical models for full LQG

Outlook and Work in Progress

Hamiltonian formulation of GR
Relational Formalism: Observables & Evolution

Basis of Hkin

Spin network functions [Ashtekar, Isham, Lewandowski, Rovelli, Smolin ’90]

j1

j2 j3

j4

j5

j6
j7

j8

j9

j10

j11

j12
j13

j14

j15

j16

j17

j18

j19

j20

j21

j22

j23

Kristina Giesel Dynamics of LQG

• the next task is to define a dynamics for such quantum states

• basic strategy is to encode in TGFT action the definition of (quantum) simplicial geometry of 4d cells 
in terms of data associated to their (boundary) 3d cells, in group-theoretic language

quantum states for extended simplicial 3-complexes (spin network graphs) = 
entangled many-body states of many quantum tetrahedra (spin network vertices)

E. Colafranceschi, DO, '21



Quantum states of many quantum tetrahedra

• full Hilbert space (arbitrary number of (connected or disconnected) tetrahedra):

GFT Fock space

3

triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L

2(G⇥d): F(Hv) =
L

1

V=0 sym

n⇣
H(1)

v ⌦H(2)
v ⌦ · · ·⌦H(V )

v

⌘o
, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h
'̂(~g) , '̂†(~g0)

i
= IG(~g,~g0)

⇥
'̂(~g) , '̂(~g0)

⇤
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h
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†(~g) , '̂†(~g0)

i
= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0

i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
'̂, '̂

†
�
.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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• spin network states for arbitrary graphs 
~ arbitrary quantum simplicial lattices
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Spin networks = graphs dual to simplicial complexes

▪ edges carrying SU(2) spins

▪ open edges carrying SU(2) magnetic indices

▪ nodes carrying intertwiners (gauge invariant tensors)

As kinematical states, spin networks enter* various related QG approaches:

• Loop quantum gravity (canonical quantization of general relativity)

• Spin foam models (covariant LQG or gravity as generalized lattice gauge theory)

• Group field theory (quantum field theory for simplicial geometry)

*with different Hilbert space structures for graph superposition!

SPIN NETWORK FORMALISM FOR QUANTUM SPACETIME

SPIN NETWORK GRAPHSIMPLICIAL COMLEX

9

• can show "discrete entanglement/geometry correspondence"


• same kind of quantum states as in LQG and lattice quantum gravity, 
but even less "spatiotemporal interpretation"

• GFT field operators (creating/annihilating spinnet vertices/tetrahedra):
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Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).
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irreducible unitary representation of SU(2) labeled by the half-integer Ji.
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Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
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combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
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gluing 
(entangling edge dof)

maximally entangled state 
of edge degrees of freedom

Hilbert space 
for V open vertices

Hilbert space
for graph Ȗ

Spin network states arising from the entanglement of individual vertices (fundamental excitations of the GFT field):

SPIN NETWORK FORMALISM FOR QUANTUM SPACETIME - GROUP FIELD THEORY PERSPECTIVE

link state

internal links 
of combinatorial pattern Ȗ

Ȗ

maximal entanglementmany- body wave-function 
for V open vertices

1111

• gluing quantum tetrahedra with entanglement

TGFT as a field theory of simplicial geometry

Gluing tetrahedra = discrete space connectivity = entanglement between “atoms of space”

LQG: space(time) from entangled states of quantum geometry

a

b

Entanglement of a Wilson line

in the Hilbert space decomposition the Wilson loop pure state reads

=
1p

2j + 1

2j+1X

c=1

hU |�1, j, a, ci hU |�2, j, c, bi
c

{|�, j, a, ci}, {|�, j, c, bi} orthonormal sets in H�1 , H�2

|�, j, a, bi = 1p
2j + 1

2j+1X

c=1

|�, j, a, ci ⌦ |�, j, c, bi

w/

define the reduced density matrix ⇢1 = Tr2[|�, j, a, bih�, j, a, b|]

S(�1) = �Tr[⇢1 log ⇢1] = log(2j + 1)

entanglement entropy of the wilson line

maximally mixed state

LQG structural level:

Donnelly 2012

gravity as a lattice gauge theory on a superposition of SU(2)/SL(2,C)  spin-network graphs 

diffeos compatible definition of entanglement: localisation 
and boundary charges — holographic dualities?

=> space geometry from pre-geometry, ent & coarse graining 

 (study of continuum limit) Girelli Livine 05, Livine Terno 2005-08

Charles Livine 2016, GC Mele, Vitale, Oriti

Delcamp Dittrich Riello, Geiller 16-17

Freidel Donnelly 16

Area law for entanglement entropy as a signature of good semiclassical behaviour:

Bianchi Guglielmon Hackll Yokomizo 16
 GC Rovelli Haggard Riello Ruggiero 14-15, Hamma Hung Marciano Zhang 15

Bianchi Myers 2012

 GC Anzà 16, Han et al. 16

=>

& BH entropy: Rovelli, Perez, de Lorenzo, Smerlak, Husain, Bodendorfer, 

Oriti, Pranzetti Sindoni … \infty

Dittrich, Bahr, Steinhaus, Martin-Benito...

Freidel Perez Pranzetti 16

-

-

Forming extended structures: gluing building blocks ——-> states on connected graphs/simplicial complexes
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generic quantum state: collection of spin network vertices (incl. glued ones) or tetrahedra (incl. glued ones)

Quantization of Systems with Constraints
Two dynamical models for full LQG

Outlook and Work in Progress

Hamiltonian formulation of GR
Relational Formalism: Observables & Evolution

Basis of Hkin

Spin network functions [Ashtekar, Isham, Lewandowski, Rovelli, Smolin ’90]
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Kristina Giesel Dynamics of LQG

• the next task is to define a dynamics for such quantum states

• basic strategy is to encode in TGFT action the definition of (quantum) simplicial geometry of 4d cells 
in terms of data associated to their (boundary) 3d cells, in group-theoretic language

quantum states for extended simplicial 3-complexes (spin network graphs) = 
entangled many-body states of many quantum tetrahedra (spin network vertices)

E. Colafranceschi, DO, '21



TGFT
Simple GFT condensates as homogeneous continuum geometries (not encoding any topological information)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)
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Thursday, March 7, 2013

Gielen, DO, Sindoni, ’13; Calcagni, De Cesare, 
Gielen, DO, Pithis, Sakellariadou, Sindoni, 
Wilson-Ewing,  …

described by single collective wave function 
(depending on homogeneous anisotropic geometric data)

� (D) D ' {geometries of tetrahedron} '
' {continuum spatial geometries at a point} '
' minisuperspace of homogeneous geometries

Gielen, ‘14

GFT (condensate) cosmology

Effective dynamics (from inserting state in fundamental quantum eqns: GFT eqns of motion

i.e. mean field (Gross-Pitaevskii) hydrodynamics
Z

[dg0i] K̃(gi, g
0
i)�(g0i) + �

�Ṽ
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

•  simplest
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(in terms of SU(2) irreps)

+ additional "geometricity" constraints that can be imposed at dynamical level

GFT Fock space

3

triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L
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, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
'̂, '̂

†
�
.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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e.g. volume operator
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+ 2nd quantized 
operators

"2nd quantized Loop Quantum Gravity"



• main guideline for model building

define models that produce, in perturbative expansion (i.e. where lattice structures are relevant), 


• interaction processes (Feynman diagrams) of quantum simplices corresponding to 4d lattices of any topology 


• quantum (Feynman) amplitudes given by lattice gravity path integrals (coupled to scalar fields) 
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(combines ideas of quantum Regge calculus and dynamical triangulations)

Feynman amplitudes (model-dependent) = sum over group-theoretic data (group elements, Lie algebra 
elements, group irreps) weighted by  amplitude related to discrete gravity ~ spin foam models



• main guideline for model building
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extension to TGFT models including "matter" dofs - example: scalar matter
TGFT models for QG coupled to scalar fields

basic guideline for model-building (choosing GFT action): 

GFT Feynman amplitudes = simplicial path integrals for gravity coupled to scalar fields

Y. Li, DO, M. Zhang, '17
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P� Ṽ L

l P�

PG V�

4 VG
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⇣
�l�
L

⌘2

V� = e
i
~V V(�v),

P� Ṽ L
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geometric coupling potential

various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action

X

with consequent extension of field operators, quantum states and operators on Fock space
• domain of GFT field extended to include values of scalar fields

Clearly, if one wants to introduce more (say n) than one minimally coupled massless

scalar field, the group field operator becomes '̂(gI ,�a) ⌘ '̂(gI ,�1, . . . ,�n), with a =

1, . . . , n. Of course, the commutation relation in (2.6a) has to be changed consistently, so

that h
'̂(gI ,�

a), '̂†
�
hI , (�

0)a
�i

= IG(gI , hI)�(n)
�
�a � (�0)a

�
. (2.13)

Importantly, this change on the kinematic structure of the Fock space is reflected also in

the second quantized operators, which now involve integrals over all the possible values of

�a 2 Rn. For instance, the number operator reads

N̂ =

Z
dn�

Z
dgI '̂

†(gI ,�
a)'̂(gI ,�

a) . (2.14a)

A crucial quantity for describing cosmological geometries is the volume operator

V̂ =

Z
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Z
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0

I '̂
†(gI ,�
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0

I)'̂(g
0

I ,�
a) , (2.14b)

whose matrix elements V (gI , g0I) are defined from those of the first quantized volume op-

erator in the group representation5.

The presence of “pre-matter” data allows for the construction of a set of observables

naturally related to them, through polynomials and derivatives with respect to �a for each

a = 1, . . . , n. In particular, the two fundamental, self-adjoint ones that can be obtained in

this way are the “scalar field operator” and the “momentum operator” [53]:

X̂b ⌘
Z
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Z
dgI �

b'̂†(gI ,�
a)'̂(gI ,�

a) , (2.14c)
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, (2.14d)

whose expectation values on appropriate semi-classical and continuum states should be

associated to the scalar field itself and possibly its momentum, which are at the core of a

relational definition of dynamics and evolution [18], as we will briefly review below.

2.2 Continuum geometries, e↵ective relationality and GFT condensates

In order to describe the relational evolution of cosmological small inhomogeneities, one

necessary step is to identify a class of quantum states which admit some “proto-geometric”

interpretation in terms of approximate continuum geometries. This allows to define an

e↵ective notion of relational evolution, whose general definition in a “pre-geometric” sector

of an emergent quantum gravity theory (such as a GFT) is instead technically and concep-

tually very complicated [18], as we have discussed in Section 1. Such “proto-geometric”

states are expected to be the result of some form of coarse-graining over the fundamental,

microscopic degrees of freedom, and thus to show some form of collective behavior. In a

sense, they are associated to a hydrodynamic description of the underlying quantum grav-

ity model. The simplest form of such collective behavior is shown by coherent (or, more

5Such an operator is diagonal in the spin representation, with eigenvalues ⇠ j3/2 for the EPRL-like

model we are considering here and ⇠ ⇢3/2 for the extended BC model.
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and consequent extension of GFT action & eqns of motion

define models that produce, in perturbative expansion (i.e. where lattice structures are relevant), 


• interaction processes (Feynman diagrams) of quantum simplices corresponding to 4d lattices of any topology 


• quantum (Feynman) amplitudes given by lattice gravity path integrals (coupled to scalar fields) 
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(combines ideas of quantum Regge calculus and dynamical triangulations)

Feynman amplitudes (model-dependent) = sum over group-theoretic data (group elements, Lie algebra 
elements, group irreps) weighted by  amplitude related to discrete gravity ~ spin foam models



• main guideline for model building
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extension to TGFT models including "matter" dofs - example: scalar matter
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various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action
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with consequent extension of field operators, quantum states and operators on Fock space
• domain of GFT field extended to include values of scalar fields

Clearly, if one wants to introduce more (say n) than one minimally coupled massless
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erator in the group representation5.

The presence of “pre-matter” data allows for the construction of a set of observables
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whose expectation values on appropriate semi-classical and continuum states should be

associated to the scalar field itself and possibly its momentum, which are at the core of a

relational definition of dynamics and evolution [18], as we will briefly review below.

2.2 Continuum geometries, e↵ective relationality and GFT condensates

In order to describe the relational evolution of cosmological small inhomogeneities, one

necessary step is to identify a class of quantum states which admit some “proto-geometric”

interpretation in terms of approximate continuum geometries. This allows to define an

e↵ective notion of relational evolution, whose general definition in a “pre-geometric” sector

of an emergent quantum gravity theory (such as a GFT) is instead technically and concep-

tually very complicated [18], as we have discussed in Section 1. Such “proto-geometric”

states are expected to be the result of some form of coarse-graining over the fundamental,

microscopic degrees of freedom, and thus to show some form of collective behavior. In a

sense, they are associated to a hydrodynamic description of the underlying quantum grav-

ity model. The simplest form of such collective behavior is shown by coherent (or, more

5Such an operator is diagonal in the spin representation, with eigenvalues ⇠ j3/2 for the EPRL-like

model we are considering here and ⇠ ⇢3/2 for the extended BC model.

– 10 –

and consequent extension of GFT action & eqns of motion

define models that produce, in perturbative expansion (i.e. where lattice structures are relevant), 


• interaction processes (Feynman diagrams) of quantum simplices corresponding to 4d lattices of any topology 


• quantum (Feynman) amplitudes given by lattice gravity path integrals (coupled to scalar fields) 
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(combines ideas of quantum Regge calculus and dynamical triangulations)

Feynman amplitudes (model-dependent) = sum over group-theoretic data (group elements, Lie algebra 
elements, group irreps) weighted by  amplitude related to discrete gravity ~ spin foam models

Quantum Gravity as sum over simplicial topologies and over quantum discrete geometries



Emergent cosmological dynamics 
and field theory

M. Assanioussi, G. Calcagni, A. Calcinari, M. De Cesare, R. Dekhil, Delhom, F. Gerhardt, S. Gielen, 
F. Greco, A. Jercher, T. Landstaetter, I. Kotecha, S. Liberati, L. Marchetti, L. Mickel, DO, X. Pang, A. 
Pithis, A. Polaczek, M. Sakellariadou, L. Sindoni, A. Tomov, Y. Wang, E. Wilson-Ewing, ....



Continuum approximation and collective physics

Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

S(',') =
1
2

Z
[dgi]'(gi)K(gi)'(gi) +

�

D!

Z
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TGFTs: field theories of quantized simplices with non-local interactions (describing how simplices form higher-cells)
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(universe as QG fluid) TGFT condensate hydrodynamics
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TGFTs: field theories of quantized simplices with non-local interactions (describing how simplices form higher-cells)

hypothesis: relevant regime is QG hydrodynamicshypothesis: geometric phase is QG condensate phase

(universe as QG fluid) TGFT condensate hydrodynamics

• reliability of mean field description supported (not proven) by Landau-Ginsburg analysis 
of quantum geometric models:


 Gaussian critical point in "IR" (i.e. small-j), fluctuations suppressed, condensate phase

A. Pithis, J. Thurigen, L. Marchetti, R. Dekhil, DO, '22,'23 + FRG analysis of 
simpler TGFT models
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TGFTs: field theories of quantized simplices with non-local interactions (describing how simplices form higher-cells)

TGFT mean field hydrodynamics

F�(J) = lnZ�[J ] �[�] = supJ (J · �� F (J)) h'i = �
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✴  simplest approximation: 
mean field hydrodynamics �[�] ⇡ S�(�)
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mean field ~ condensate wavefunction

• corresponding quantum states:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)
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teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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TGFTs: field theories of quantized simplices with non-local interactions (describing how simplices form higher-cells)

Universe as BEC (TGFT condensate)

TGFT mean field hydrodynamics

F�(J) = lnZ�[J ] �[�] = supJ (J · �� F (J)) h'i = �

<latexit sha1_base64="dJGsCq9YX48nnfEMnVYnZZiKihs="></latexit>

✴  simplest approximation: 
mean field hydrodynamics �[�] ⇡ S�(�)

<latexit sha1_base64="AuAml1DfaujvM7UIvEYONyKu5/A=">AAACEXicbVDLSgMxFM3UV62vqks3wSJUKGVGCuqu6EKXFe0DOkO5k6ZtaDITkoxYSn/Bjb/ixoUibt25829MHwttPXDhcM69yb0nlJxp47rfTmppeWV1Lb2e2djc2t7J7u7VdJwoQqsk5rFqhKApZxGtGmY4bUhFQYSc1sP+5div31OlWRzdmYGkgYBuxDqMgLFSK5v3r0AIaPqyxwK/4IOUKn7wC/i25XP7TBvyY+sYt7I5t+hOgBeJNyM5NEOllf3y2zFJBI0M4aB103OlCYagDCOcjjJ+oqkE0ocubVoagaA6GE4uGuEjq7RxJ1a2IoMn6u+JIQitByK0nQJMT897Y/E/r5mYzlkwZJFMDI3I9KNOwrGJ8Tge3GaKEsMHlgBRzO6KSQ8UEGNDzNgQvPmTF0ntpOiViuc3pVz5YhZHGh2gQ5RHHjpFZXSNKqiKCHpEz+gVvTlPzovz7nxMW1PObGYf/YHz+QP/mZx+</latexit>

mean field ~ condensate wavefunction

• corresponding quantum states:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coefficients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ∀k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 δij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to differ-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI "→ gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ϕ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

σ̂ :=

∫
d4g σ(gI)ϕ̂

†(gI) (17)

if we require σ(gIk) = σ(gI) for all k ∈ SU(2); with-
out loss of generality σ(k′gI) = σ(gI) for all k′ ∈ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

ξ̂ :=
1

2

∫
d4g d4h ξ(gIh

−1
I )ϕ̂†(gI)ϕ̂

†(hI), (18)

where due to (1) and [ϕ̂†(gI), ϕ̂†(hI)] = 0 the function ξ
can be taken to satisfy ξ(gI) = ξ(kgIk′) for all k, k′ in
SU(2) and ξ(gI) = ξ(g−1

I ). ξ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|σ〉 := exp (σ̂) |0〉 , |ξ〉 := exp
(
ξ̂
)
|0〉 . (19)

|σ〉 corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |ξ〉
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ϕ:

S[ϕ] =
1

2

∫
d4g d4g′ ϕ(gI)K̂(gI , g

′
I)ϕ(g

′
I) + λV5[ϕ] (20)

leading to the quantum equation of motion
∫

d4g′ K̂(gI , g
′
I)ϕ̂(g

′
I) + λ

δV̂5

δϕ̂(gI)
= 0 . (21)

Since |σ〉 is an eigenstate of ϕ̂(gI), when (21) acts on |σ〉
it becomes a non-linear equation for σ:

∫
d4g′ K̂(gI , g

′
I)σ(g

′
I) + λ

δV5

δϕ(gI)

∣∣∣
ϕ=σ

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |ξ〉 all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ξ: Multiplying (21) with a field
operator and taking an expectation value, we find

∫
d4g′′ K̂(g′I , g

′′
I )ξ(gIg

′′
I
−1

) = 0 . (23)

•  simplest
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 (simplest): GFT condensate, GFT field coherent state

hypothesis: relevant regime is QG hydrodynamicshypothesis: geometric phase is QG condensate phase

(universe as QG fluid) TGFT condensate hydrodynamics

• reliability of mean field description supported (not proven) by Landau-Ginsburg analysis 
of quantum geometric models:


 Gaussian critical point in "IR" (i.e. small-j), fluctuations suppressed, condensate phase

A. Pithis, J. Thurigen, L. Marchetti, R. Dekhil, DO, '22,'23 + FRG analysis of 
simpler TGFT models
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• condensate wavefunction / mean field defined on minisuperspace



key features of GFT mean field hydrodynamics

• condensate wavefunction / mean field defined on minisuperspace

• cosmological 
interpretation:

isomorphism between domain of TGFT condensate wavefunction and minisuperpsace

� (D) D ' {geometries of tetrahedron} '
' {continuum spatial geometries at a point} '
' minisuperspace of homogeneous geometries

Gielen, '15
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key features of GFT mean field hydrodynamics

• condensate wavefunction / mean field defined on minisuperspace

• cosmological 
interpretation:

isomorphism between domain of TGFT condensate wavefunction and minisuperpsace

� (D) D ' {geometries of tetrahedron} '
' {continuum spatial geometries at a point} '
' minisuperspace of homogeneous geometries

Gielen, '15


Jercher, Pithis, DO, '23

• mean field hydrodynamics = non-linear (and non-local) extension of loop quantum cosmology  
- appropriate for result of coarse graining up to global (cosmological observables)

general form of resulting (Gross-Pitaevskii) equations of motion for condensate wavefunction (mean field):
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• can be extracted for any concrete TGFT model (domain extended to include scalar matter)



key features of GFT mean field hydrodynamics

• condensate wavefunction / mean field defined on minisuperspace

• what interactions capture: 


more details of dynamics of quantum geometry, inhomogeneities, topology change

• cosmological 
interpretation:

isomorphism between domain of TGFT condensate wavefunction and minisuperpsace

� (D) D ' {geometries of tetrahedron} '
' {continuum spatial geometries at a point} '
' minisuperspace of homogeneous geometries

Gielen, '15


Jercher, Pithis, DO, '23

• mean field hydrodynamics = non-linear (and non-local) extension of loop quantum cosmology  
- appropriate for result of coarse graining up to global (cosmological observables)

general form of resulting (Gross-Pitaevskii) equations of motion for condensate wavefunction (mean field):
<latexit sha1_base64="mf6wvd7hE1ZKZe0U4CI7fbFMs90="></latexit>Z
[dg0]d�0K(g,�; g0,�0)�(g0,�0) + �

�

�'
V(')|'⌘� = 0

polynomial functional of 
condensate wavefunctioncosmology as QG hydrodynamics on (mini)superspace

• can be extracted for any concrete TGFT model (domain extended to include scalar matter)



Hydrodynamics on (mini)superspace

• domain: 


minisuperspace - geometric data (scale factors, often taking discrete (eigen)values) + (scalar) matter field values
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massless scalar field. This is given by [57]

S =
3

8⇡G

Z
dtN

✓
�
aV0ȧ2

N2
+

V

N

�̇2

2N

◆

= �
3

8⇡G

Z
dtNV

 
H2

N2
�

4⇡G

3

�̇2

N2

!
,

where � is the massless scalar field, a dot denotes a
derivative with respect to t and V0 is the fiducial coordi-
nate volume (so that V ⌘ V0a3). The constraint obtained
from an Hamiltonian analysis of the above action is given
by

C = �
3

8⇡G
NVH2 +

N⇡2
�

2V
= 0 . (C1)

Together with the Poisson brackets {H,V } = 4⇡G and
{�,⇡�} = 1, the above constraint implies that the equa-
tion of motion for the massless scalar field is given by

d�

dt
= {�, C} =

N⇡�

V
,

The dynamics of V is instead given by

dV

d�
= {V, C} = 3NV ,

and by using the massles sclar field equation into the
equation for V we obtain

✓
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3V

dV

d�

◆2

⌘
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3
. (C2)

By deriving this equation with respect to �, we find in-
stead

V 00

V
=

✓
V 0

V

◆2

= 12⇡G . (C3)

These are the relational equations for a spatially flat
FRW spacetime.
Gauge fixing Let us now perform a gauge fixing,

choosing � as our time, i.e., choosing N = V �̇/⇡�. In
this way, we obtain

S = �
3

8⇡G

Z
dt�̇

V 2

⇡�

 
H2⇡2

�

V 2�̇2
�

4⇡G

3

�̇2⇡2
�

V 2�̇2

!

= �
3⇡�

8⇡G

Z
d�

✓
H

2
�

4⇡G

3

◆
. (C4)

The equations of motion generated by this action are
easily obtained by writing H = V 0/(3V ), and they are
given by

V 00

V
=

(V 0)2

V 2
,

which is the second Friedmann equation, and which gives
indeed the correct dynamics. The Hamiltonian obtained
from the above Lagrangian, therefore, can be written im-
mediately as

Hrel = �
3⇡�

8⇡G
H

2 , (C5)

neglecting irrelevant constants.
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{{ai} , {ω} , .... , {ε}} metric manifold with minisuperspace metric

• dynamical variable: (condensate) wavefunction on (mini)superspace ~ fluid density and phase
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!(ai,ω, ..,ε) = ϑ(ai,ω, ..,ε)e
i ω(ai,ε,..,ϑ) → C

• general form of the action (example: single scalar field direction, single dynamical interaction term):
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S =

∫
[dai]dω !→(ai,ω)K(a, εai ,ω, εω)!(ai,ω) + V[!(ai,ω)]

in general, non-local interaction on minisuperspace

in QG context:
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a → apj j = 0, 1/2, 1, ...

• general form of eqns of motion (example: single scalar field direction, single dynamical interaction term):
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non-linear extension of quantum cosmology!



TGFT
Simple GFT condensates as homogeneous continuum geometries (not encoding any topological information)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
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�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I )⇤(gIg
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I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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TGFT
Simple GFT condensates as homogeneous continuum geometries (not encoding any topological information)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I )⇤(gIg
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) = 0 . (23)
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg
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I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
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�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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⇥
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I )⇤(gIg
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I
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) = 0 . (23)
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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⇥
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�V5
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
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Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

•  simplest
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I )⇤(gIg
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I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg
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I
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) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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•  simplest
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where |�� x|2 =
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i=1
(�i � xi)2. For the moment we will also assume that the parameter

� is a complex quantity, C 3 � = �r + i�i, but with a positive real part, necessary for

the peaking properties of the states, �r > 0. As we will see below, allowing a complex

width for the rods peaking function allows the perturbation equations to be dependent on

a derivative kernel with emergent Lorentz signature.

GFT action. Having made these premises, we now specify the form of SGFT. As ex-

plained in Section 2.1, SGFT depends on the precise spinfoam (or simplicial gravity) model

coupled with d + 1 massless scalar fields one wants to reproduce. While the EPRL-like

and extended BC models di↵er on their domain (respectively SU(2) and SL(2,C) ⇥ H3)

and on the precise way the simplicity constraint is imposed, thus resulting in (in princi-

ple) di↵erent kinetic and interaction kernels, they are both defined by an action including

a quadratic kinetic term and a non-local interaction term U + U⇤ (the star representing

complex conjugation) of simplicial9 type characterized by 5 powers of the field operator,

SGFT = K + U + U⇤.

The resulting form of the action is however quite complicated to handle for most practi-

cal applications. For this reasons, one often makes some additional simplifying assumptions

on SGFT [18, 53]:

• First of all, one imposes that the field symmetries of the classical action are preserved

at the quantum level, meaning that they are also symmetries of the GFT action SGFT.

In the case considered here, the symmetries to be respected are those highlighted in

the section above: invariance under Lorentz transformations/Euclidean rotations,

shifts, and reflections. This greatly simplifies the form of the interaction and kinetic

terms, which read, in the EPRL-like case10 [18, 53]
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where (���0)2� ⌘ sgn(�)M (�)
µ⌫ (���0)µ(���0)⌫ and whereK and U are the respectively

the aforementioned kinetic and interaction kernels encoding information about the

9These kind of interactions are said simplicial because they represent the gluing of 5 di↵erent tetrahedra

in order to form a 4-simplex, the basic building block of a 4-dimensional discretized manifold.
10Similar expressions hold for the extended BC model, provided that one extends the domain of the GFT

fields and kinetic interaction kernels as gI ! (GI ;X). Moreover, since the normal X is non-dynamical,

the interaction kernel does not depend on it. As a consequence, only the integrated field (2.4) becomes

important at the level of interactions. The kinetic kernel instead depends on the normal in a localized way,

imposing X = X 0, with X and X 0 being the arguments of '̄ and ' respectively. We refer to [68] for more

details on the action of the extended BC model.
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• effective relational dynamics is then extracted (derivatives are with respect to clock time):
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EPRL-like model. In particular, as already mentioned in Section 2.1, it is U that

carries information about the specific Lorentzian embedding of the theory.

• The second simplifying assumption that is often made in cosmological applications

is that one is interested in a “mescocopic regime” where interactions are in fact

essentially negligible. Clearly, this can only be a transient regime, and one expects

that, eventually, interactions do become important (see e.g. [62, 67, 83], for some

works which study the phenomenological implications of the inclusion of interactions).

Dynamical equations. Under both these assumptions, and performing a Fourier trans-

form with respect to the variables � and �0, one can see that the averaged quantum equa-

tions of motion reduce to
Z

dhI

Z
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Rewriting explicitly equation (3.6) in terms of these quantities, we thus find
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This is our fundamental equation determining the form of the reduced condensate wave-
function �̃. As in [18, 53], however, it is useful to decompose equation (3.7) in its real and
imaginary parts, by defining �̃j ⌘ ⇢j exp[i✓j ], so that, using

�̃00

j =
⇥
⇢00j � (✓0j)

2⇢j + i✓00j ⇢j + 2i⇢0j✓
0

j

⇤
ei✓j ,

r2�̃j =
⇥
r2⇢j � (r✓j)

2⇢j + ir2✓j⇢j + 2ir⇢j ·r✓j
⇤
ei✓j ,

we see that, for the real and imaginary parts we have, respectively,

0 = ⇢00j +Re↵2r2⇢j �
h�
✓0j
�
2
+ (�)⌘2j � �✓0j � Re↵2 (r✓j)
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i
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� 2r⇢j ·r✓j , (3.9a)
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j � �⇢0j +Re↵2
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2r⇢j ·r✓j +r2✓j⇢j

⇤
� (�)�2

j ⇢j

+ Im↵2

h
r2⇢j � (r✓j)

2 ⇢j
i
, (3.9b)

where we have suppressed the explicit dependence of functions for simplicity.
At this point, it is important to recall that we are interested in slightly inhomogeneous

relational quantities. Therefore, in the next section we will consider a perturbative framework
(with respect to spatial gradients) in which we will study the equations above.
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written as
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where we have specified the dependence of the condensate modulus and phase on x0 and

⇡� explicitly. Let us rewrite the second equation by multiplying by ⇢̄j 6= 0: we obtain
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Now, assume that, in the regime of interest, (�)�2

j in the above equation is negligible11. The

results, in these cases are the same as in [18], so that the equations for background phase

11Recall that (�)�2

j / Im↵. We will see below that in order to guarantee the emergence of a local

Lorentz symmetry in the perturbation equations, | Im↵| must be much smaller than one, thus providing an

additional justification to the requirement of small (�)�2

j .
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homogeneous background + inhomogeneous perturbations (spacetime localization defined in relational terms)
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using: rewrite in standard hydrodynamic form (fluid density, phase)
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where we have suppressed the explicit dependence of functions for simplicity.
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where we have suppressed the explicit dependence of functions for simplicity.

At this point, it is important to recall that we are interested in slightly inhomoge-

neous relational quantities. Therefore, in the next section we will consider a perturbative

framework (with respect to spatial gradients) in which we will study the equations above.

3.3 Background and perturbed equations of motion

The perturbative context will be defined by assuming that the functions ⇢j and ✓j can be

written as

⇢j = ⇢̄j + �⇢j , ✓j ⌘ ✓̄j + �✓j , (3.10)
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perturbations eqns:

First order. The first order equations, instead, are
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The two equations form a complicated set of coupled second order di↵erential equations for
the variables �⇢j and �✓j . The decoupling regime can be easily identified by first rewriting
equation (3.14b) as
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where, similarly to what we did in the background case, and in light of the above discussion,
we neglected the term proportional to (�)�2

j . It is then easy to see that the decoupling regime

corresponds to the limit in which12 (assumption DC3)

| Im↵2| = 2

3

⇡2
x�r|�i|
✏2⇡2

0

⌧ 1 , (3.16)

and when the background density ⇢̄ is very large (assumption DC1). Indeed, using the
background equation (3.13a), equation (3.14a) can be written as

L[�⇢j ] ' 2�✓0jQj/⇢̄j ,

with L an appropriate linear di↵erential operator. So, �⇢ ⇠ �✓/⇢̄, and for large enough ⇢̄j ,
the right-hand-side is negligible. Similarly, using that ✓̄00j = �2Qj ⇢̄

�2

j (⇢̄0j/⇢̄j) ⇠ �2Qjµj ⇢̄
�2

j ,

we deduce that the first term at the second line of equation (3.15) is of order �⇢j/⇢̄2j , while
the first term at the first line of equation (3.15) is of order ⇢̄j�✓j , so for large enough ⇢̄j , only
the latter is important. As a result, equations (3.14) become
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which are clearly decoupled. An interesting feature of the above equations is that any Lorentz
property of the second order di↵erential operator in the perturbed equations is in fact only
a result of the features of the peaking functions, i.e. of the (approximate) vacuum state
we work with, and not of the fundamental symmetries imposed on the GFT action SGFT.
Indeed, the parameter �, determining whether the matter variables enter the fundamental
GFT action in a Lorentz (� = 1) or Euclidean (� = �1) invariant fashion, only enters in

12Notice that this condition is consistent with requirement of having negligible (�)�, see also footnote 11.
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eg for large N (late time) and specific range of parameters



next steps in construction of effective cosmological dynamics

from mean field hydrodynamics 


to cosmological dynamics

• effective relational dynamics is then extracted (derivatives are with respect to clock time):

<latexit sha1_base64="7ulxgUdgV6/slQ4restWshQGfCw="></latexit>

ω→→
j (ε0) +Aω→

j(ε0) +Bωj(ε0) + V[ωj(ε0)] = 0example:



next steps in construction of effective cosmological dynamics

from mean field hydrodynamics 


to cosmological dynamics

• turning relational hydrodynamics to dynamics of relational observables

<latexit sha1_base64="1bWibjbyEpEK6uiMPf+hUjzTifA="></latexit>✓
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2 = f(V,�,',�, ....)example:

• effective relational dynamics is then extracted (derivatives are with respect to clock time):
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j(ε0) +Bωj(ε0) + V[ωj(ε0)] = 0example:



next steps in construction of effective cosmological dynamics
from quantum GFT observables (defined on fundamental Fock space) 


to relational cosmological quantities (few observables so far)



next steps in construction of effective cosmological dynamics
from quantum GFT observables (defined on fundamental Fock space) 


to relational cosmological quantities (few observables so far)

• value of matter scalar field

• momentum of matter scalar field

• universe volume

• "particle" number
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next steps in construction of effective cosmological dynamics
from quantum GFT observables (defined on fundamental Fock space) 


to relational cosmological quantities (few observables so far)

• going relational - to obtain relational time evolution:


choose one of scalar field variables in domain as "clock" - use it label evolution

• effective approach:

peaked condensate wavefunctions:

fluctuations in (conjugate) scalar field 
momentum also small if:

16

A. States of a leaf: Coherent Peaked States

In order to construct appropriate relational states, we
can take inspiration from the classical spacetime intu-
ition. The easiest way to define a relational dynamics of
geometric quantities at the classical level is to fix a gauge
and choose a foliation of spacetime adapted to the mass-
less scalar field itself. Analogously, in our case, What we
need is to construct states which can be interpreted as
“bona fide” leaves of a �-foliation9. Starting from the
class of coherent states (20), we want to specialize to
states which are sharply peaked on a given value of the
massless scalar field variable �. In other words, we want
states which represent an infinite superposition of atoms
of space which are associated in a precise way (i.e., with
an a priori defined small margin of error) to a given value
�0 of the massless scalar field. In a sense, we are recon-
structing collectively, coarse-grained synchronized states,
similar to those living in F̃ (with important di↵erences,
see the comments below). Since, in the simple condensate
states considered, all the tetrahedra share the same infor-
mation, encoded in the condensate wavefunction �(gI ,�),
the needed states can be constructed by assuming that
the condensate wavefunction takes the following form:

�✏(gI ,�) ⌘ ⌘✏(gI ;�� �0,⇡0)�̃(gI ,�) , (51)

where ⌘✏ is a peaking function around �0 with a typical
width given by ✏. The simplest example of such peaking
function is given by a Gaussian,

⌘✏(�� �0,⇡0) ⌘ N✏ exp


�
(�� �0)2

2✏

�
exp[i⇡0(�� �0)] ,

(52)
where N✏ is a normalization constant to be fixed later,
and where we have assumed, for simplicity, that the peak-
ing function does not depend on the group variables gI .

1. Comments on the properties of the CPSs

Let us briefly comment on some features of these CPSs.
In order to implement a notion of e↵ective relational

dynamics, these states should satisfy the conditions dis-
cussed in Subsection II B, at least in some regimes and
in some regions of the parameter space. A first condi-
tion that we impose on the above parameters in order
for these CPSs to actually meet the requirements in Sub-
section II B is

✏⌧ 1 . (53a)

This condition, as the computations below will clarify
further, is what allows us to “synchronize the internal

9 The connection between GFT coherent states and 3-geometries
was already suggested in [34].

clocks” of the fundamental GFT quanta10, and thus to
consider the CPSs as some kind of discrete counterpart of
proper leaves of a foliation based on the massless scalar
field itself. As a consequence, one can interpret (at the
e↵ective level) the expectation value of an operator on a a
CPS characterized by �0 as the same operator computed
at a the relational time �0 (i.e., on a slice labelled by �0).
However, this “synchronization condition” has to be

taken with care. Taking the limit ✏ ! 0, in fact, would
produce [46] arbitrarily large quantum fluctuations on the
momentum of the massless scalar field. Such infinite fluc-
tuations can not be of course included in a self-consistent
framework implementing a notion e↵ective relational dy-
namics. From now on, we will therefore consider a small
but finite ✏. Formally, therefore, CPSs do not live in
F̃ , even though they can be thought to be “very close”
(small ✏) to such “synchronized states”11.
Still, even with a finite, but small ✏, relative variances

of the operator ⇧̂ (and similarly of the operator Ĥ to be
defined below) turn out to be possibly very large [46].
This feature should not be surprising, since �̂ and ⇧̂
are canonically conjugate. However, while one expects
such large fluctuations to naturally arise in a truly pre-
geometric phase of the theory, there must exist a regime
in a proto-geometric phase in which they are suppressed,
eventually leading to a good semi-classical description of
the scalar field. For instance, this can be achieved by
imposing the condition

✏⇡2
0 � 1 (53b)

on the parameters ✏ and ⇡0 [46], which we will there-
fore assume from now on. So, we see that the conditions
(53) are related to very di↵erent aspects of the implemen-
tation of the relational dynamics: while the good clock
condition (53a) is important to obtain an almost perfect
“synchronization” of the fundamental “atoms of space”
(and thus it is relevant even at the level of average values
of operators), condition (53b) is related only to quantum
fluctuations of the conjugate clock variable.
Second, these states, by construction, can not be ‘min-

imum uncertainty states’ (MUCs) for the couple of op-
erators (X̂, ⇧̂). Indeed, it is well-known that a couple of
operators Â and B̂ saturates the Heisenberg uncertainty
inequality on a state | i if and only if [47]

[Â+ i�B̂] | i =
h
hÂi + i� hBi 

i
| i ,

10 For generic condensate states, such synchronization performed at
the level of the collective condensate wavefunction would be only
performed at the coarse-grained level; for the simple coherent
condensate states we use here, this is in fact also implemented
at the level of the individual GFT quanta. It is important to
distinguish the general rationale from the peculiarities of the
specific implementation.

11 Notice that from this perspective (coherent) perfectly “synchro-
nized states” living in F̃ should not be seen as defining an ap-
propriate e↵ective notion of relational dynamics.

peaking function around     
with a typical width given by 
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such large fluctuations to naturally arise in a truly pre-
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eventually leading to a good semi-classical description of
the scalar field. For instance, this can be achieved by
imposing the condition
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on the parameters ✏ and ⇡0 [46], which we will there-
fore assume from now on. So, we see that the conditions
(53) are related to very di↵erent aspects of the implemen-
tation of the relational dynamics: while the good clock
condition (53a) is important to obtain an almost perfect
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(and thus it is relevant even at the level of average values
of operators), condition (53b) is related only to quantum
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Second, these states, by construction, can not be ‘min-
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[Â+ i�B̂] | i =
h
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A. States of a leaf: Coherent Peaked States

In order to construct appropriate relational states, we
can take inspiration from the classical spacetime intu-
ition. The easiest way to define a relational dynamics of
geometric quantities at the classical level is to fix a gauge
and choose a foliation of spacetime adapted to the mass-
less scalar field itself. Analogously, in our case, What we
need is to construct states which can be interpreted as
“bona fide” leaves of a �-foliation9. Starting from the
class of coherent states (20), we want to specialize to
states which are sharply peaked on a given value of the
massless scalar field variable �. In other words, we want
states which represent an infinite superposition of atoms
of space which are associated in a precise way (i.e., with
an a priori defined small margin of error) to a given value
�0 of the massless scalar field. In a sense, we are recon-
structing collectively, coarse-grained synchronized states,
similar to those living in F̃ (with important di↵erences,
see the comments below). Since, in the simple condensate
states considered, all the tetrahedra share the same infor-
mation, encoded in the condensate wavefunction �(gI ,�),
the needed states can be constructed by assuming that
the condensate wavefunction takes the following form:

�✏(gI ,�) ⌘ ⌘✏(gI ;�� �0,⇡0)�̃(gI ,�) , (51)

where ⌘✏ is a peaking function around �0 with a typical
width given by ✏. The simplest example of such peaking
function is given by a Gaussian,

⌘✏(�� �0,⇡0) ⌘ N✏ exp


�
(�� �0)2

2✏

�
exp[i⇡0(�� �0)] ,

(52)
where N✏ is a normalization constant to be fixed later,
and where we have assumed, for simplicity, that the peak-
ing function does not depend on the group variables gI .

1. Comments on the properties of the CPSs

Let us briefly comment on some features of these CPSs.
In order to implement a notion of e↵ective relational

dynamics, these states should satisfy the conditions dis-
cussed in Subsection II B, at least in some regimes and
in some regions of the parameter space. A first condi-
tion that we impose on the above parameters in order
for these CPSs to actually meet the requirements in Sub-
section II B is

✏⌧ 1 . (53a)

This condition, as the computations below will clarify
further, is what allows us to “synchronize the internal

9 The connection between GFT coherent states and 3-geometries
was already suggested in [34].

clocks” of the fundamental GFT quanta10, and thus to
consider the CPSs as some kind of discrete counterpart of
proper leaves of a foliation based on the massless scalar
field itself. As a consequence, one can interpret (at the
e↵ective level) the expectation value of an operator on a a
CPS characterized by �0 as the same operator computed
at a the relational time �0 (i.e., on a slice labelled by �0).
However, this “synchronization condition” has to be

taken with care. Taking the limit ✏ ! 0, in fact, would
produce [46] arbitrarily large quantum fluctuations on the
momentum of the massless scalar field. Such infinite fluc-
tuations can not be of course included in a self-consistent
framework implementing a notion e↵ective relational dy-
namics. From now on, we will therefore consider a small
but finite ✏. Formally, therefore, CPSs do not live in
F̃ , even though they can be thought to be “very close”
(small ✏) to such “synchronized states”11.
Still, even with a finite, but small ✏, relative variances

of the operator ⇧̂ (and similarly of the operator Ĥ to be
defined below) turn out to be possibly very large [46].
This feature should not be surprising, since �̂ and ⇧̂
are canonically conjugate. However, while one expects
such large fluctuations to naturally arise in a truly pre-
geometric phase of the theory, there must exist a regime
in a proto-geometric phase in which they are suppressed,
eventually leading to a good semi-classical description of
the scalar field. For instance, this can be achieved by
imposing the condition

✏⇡2
0 � 1 (53b)

on the parameters ✏ and ⇡0 [46], which we will there-
fore assume from now on. So, we see that the conditions
(53) are related to very di↵erent aspects of the implemen-
tation of the relational dynamics: while the good clock
condition (53a) is important to obtain an almost perfect
“synchronization” of the fundamental “atoms of space”
(and thus it is relevant even at the level of average values
of operators), condition (53b) is related only to quantum
fluctuations of the conjugate clock variable.
Second, these states, by construction, can not be ‘min-

imum uncertainty states’ (MUCs) for the couple of op-
erators (X̂, ⇧̂). Indeed, it is well-known that a couple of
operators Â and B̂ saturates the Heisenberg uncertainty
inequality on a state | i if and only if [47]

[Â+ i�B̂] | i =
h
hÂi + i� hBi 

i
| i ,

10 For generic condensate states, such synchronization performed at
the level of the collective condensate wavefunction would be only
performed at the coarse-grained level; for the simple coherent
condensate states we use here, this is in fact also implemented
at the level of the individual GFT quanta. It is important to
distinguish the general rationale from the peculiarities of the
specific implementation.

11 Notice that from this perspective (coherent) perfectly “synchro-
nized states” living in F̃ should not be seen as defining an ap-
propriate e↵ective notion of relational dynamics.
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and where we have assumed, for simplicity, that the peak-
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Let us briefly comment on some features of these CPSs.
In order to implement a notion of e↵ective relational

dynamics, these states should satisfy the conditions dis-
cussed in Subsection II B, at least in some regimes and
in some regions of the parameter space. A first condi-
tion that we impose on the above parameters in order
for these CPSs to actually meet the requirements in Sub-
section II B is
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This condition, as the computations below will clarify
further, is what allows us to “synchronize the internal
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clocks” of the fundamental GFT quanta10, and thus to
consider the CPSs as some kind of discrete counterpart of
proper leaves of a foliation based on the massless scalar
field itself. As a consequence, one can interpret (at the
e↵ective level) the expectation value of an operator on a a
CPS characterized by �0 as the same operator computed
at a the relational time �0 (i.e., on a slice labelled by �0).
However, this “synchronization condition” has to be

taken with care. Taking the limit ✏ ! 0, in fact, would
produce [46] arbitrarily large quantum fluctuations on the
momentum of the massless scalar field. Such infinite fluc-
tuations can not be of course included in a self-consistent
framework implementing a notion e↵ective relational dy-
namics. From now on, we will therefore consider a small
but finite ✏. Formally, therefore, CPSs do not live in
F̃ , even though they can be thought to be “very close”
(small ✏) to such “synchronized states”11.
Still, even with a finite, but small ✏, relative variances

of the operator ⇧̂ (and similarly of the operator Ĥ to be
defined below) turn out to be possibly very large [46].
This feature should not be surprising, since �̂ and ⇧̂
are canonically conjugate. However, while one expects
such large fluctuations to naturally arise in a truly pre-
geometric phase of the theory, there must exist a regime
in a proto-geometric phase in which they are suppressed,
eventually leading to a good semi-classical description of
the scalar field. For instance, this can be achieved by
imposing the condition

✏⇡2
0 � 1 (53b)

on the parameters ✏ and ⇡0 [46], which we will there-
fore assume from now on. So, we see that the conditions
(53) are related to very di↵erent aspects of the implemen-
tation of the relational dynamics: while the good clock
condition (53a) is important to obtain an almost perfect
“synchronization” of the fundamental “atoms of space”
(and thus it is relevant even at the level of average values
of operators), condition (53b) is related only to quantum
fluctuations of the conjugate clock variable.
Second, these states, by construction, can not be ‘min-

imum uncertainty states’ (MUCs) for the couple of op-
erators (X̂, ⇧̂). Indeed, it is well-known that a couple of
operators Â and B̂ saturates the Heisenberg uncertainty
inequality on a state | i if and only if [47]

[Â+ i�B̂] | i =
h
hÂi + i� hBi 

i
| i ,

10 For generic condensate states, such synchronization performed at
the level of the collective condensate wavefunction would be only
performed at the coarse-grained level; for the simple coherent
condensate states we use here, this is in fact also implemented
at the level of the individual GFT quanta. It is important to
distinguish the general rationale from the peculiarities of the
specific implementation.

11 Notice that from this perspective (coherent) perfectly “synchro-
nized states” living in F̃ should not be seen as defining an ap-
propriate e↵ective notion of relational dynamics.
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This is our fundamental equation determining the form of the reduced condensate wave-

function �̃. As in [18, 53], however, it is useful to decompose equation (3.7) in its real and

imaginary parts, by defining �̃j ⌘ ⇢j exp[i✓j ], so that, using
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we see that, for the real and imaginary parts we have, respectively,
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�
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i
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where we have suppressed the explicit dependence of functions for simplicity.

At this point, it is important to recall that we are interested in slightly inhomoge-

neous relational quantities. Therefore, in the next section we will consider a perturbative

framework (with respect to spatial gradients) in which we will study the equations above.

3.3 Background and perturbed equations of motion

The perturbative context will be defined by assuming that the functions ⇢j and ✓j can be

written as

⇢j = ⇢̄j + �⇢j , ✓j ⌘ ✓̄j + �✓j , (3.10)

with ⇢̄ = ⇢̄(x0,⇡�) and ✓̄ = ✓̄(x0,⇡�) being “background” (zeroth-order) quantities and

with �⇢j and �✓j being small corrections to them. Let us study the zeroth- and the first-

order (in �⇢, �✓) form of equations (3.9).

Background. At the zeroth-order equations (3.9) become
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where we have specified the dependence of the condensate modulus and phase on x0 and

⇡� explicitly. Let us rewrite the second equation by multiplying by ⇢̄j 6= 0: we obtain
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Now, assume that, in the regime of interest, (�)�2

j in the above equation is negligible11. The

results, in these cases are the same as in [18], so that the equations for background phase

11Recall that (�)�2

j / Im↵. We will see below that in order to guarantee the emergence of a local

Lorentz symmetry in the perturbation equations, | Im↵| must be much smaller than one, thus providing an

additional justification to the requirement of small (�)�2

j .
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perturbations eqns:
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The two equations form a complicated set of coupled second order di↵erential equations for
the variables �⇢j and �✓j . The decoupling regime can be easily identified by first rewriting
equation (3.14b) as
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where, similarly to what we did in the background case, and in light of the above discussion,
we neglected the term proportional to (�)�2
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and when the background density ⇢̄ is very large (assumption DC1). Indeed, using the
background equation (3.13a), equation (3.14a) can be written as
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with L an appropriate linear di↵erential operator. So, �⇢ ⇠ �✓/⇢̄, and for large enough ⇢̄j ,
the right-hand-side is negligible. Similarly, using that ✓̄00j = �2Qj ⇢̄
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we deduce that the first term at the second line of equation (3.15) is of order �⇢j/⇢̄2j , while
the first term at the first line of equation (3.15) is of order ⇢̄j�✓j , so for large enough ⇢̄j , only
the latter is important. As a result, equations (3.14) become
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which are clearly decoupled. An interesting feature of the above equations is that any Lorentz
property of the second order di↵erential operator in the perturbed equations is in fact only
a result of the features of the peaking functions, i.e. of the (approximate) vacuum state
we work with, and not of the fundamental symmetries imposed on the GFT action SGFT.
Indeed, the parameter �, determining whether the matter variables enter the fundamental
GFT action in a Lorentz (� = 1) or Euclidean (� = �1) invariant fashion, only enters in

12Notice that this condition is consistent with requirement of having negligible (�)�, see also footnote 11.
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using: rewrite in standard hydrodynamic form (fluid density, phase)
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where, similarly to what we did in the background case, and in light of the above discussion,
we neglected the term proportional to (�)�2

j . It is then easy to see that the decoupling regime

corresponds to the limit in which12 (assumption DC3)
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0

⌧ 1 , (3.16)

and when the background density ⇢̄ is very large (assumption DC1). Indeed, using the
background equation (3.13a), equation (3.14a) can be written as
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with L an appropriate linear di↵erential operator. So, �⇢ ⇠ �✓/⇢̄, and for large enough ⇢̄j ,
the right-hand-side is negligible. Similarly, using that ✓̄00j = �2Qj ⇢̄

�2
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�2
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we deduce that the first term at the second line of equation (3.15) is of order �⇢j/⇢̄2j , while
the first term at the first line of equation (3.15) is of order ⇢̄j�✓j , so for large enough ⇢̄j , only
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which are clearly decoupled. An interesting feature of the above equations is that any Lorentz
property of the second order di↵erential operator in the perturbed equations is in fact only
a result of the features of the peaking functions, i.e. of the (approximate) vacuum state
we work with, and not of the fundamental symmetries imposed on the GFT action SGFT.
Indeed, the parameter �, determining whether the matter variables enter the fundamental
GFT action in a Lorentz (� = 1) or Euclidean (� = �1) invariant fashion, only enters in

12Notice that this condition is consistent with requirement of having negligible (�)�, see also footnote 11.
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eg for large N (late time) and specific range of parameters

quantities of interest for effective continuum gravitational physics emerge as 
coarse-grained, collective observables, averages in suitable class of QG states 

• expectation values of "microscopic observables" in peaked condensate states: relational spacetime-localized observables
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from which we get eqns for observables



by inserting dynamics of condensate background into expression for universe volume: background universe dynamics

• intermediate times: large volume - QG interactions still subdominant

of isotropic GFT quanta) it is necessary to identify m2
j = 3⇡G for all j. For these val-

ues of mj, the GFT condensate dynamics reproduce the classical Friedmann equations of
general relativity. (As an aside, note that while it may be possible, at a specific relational
instant �o, to choose a di↵erent set of values for mj that also gives the correct limit,
this identification will not be preserved by the dynamics and hence the correct classical
Friedmann equations would in this case only be recovered in a small neighbourhood of
relational time around �o.)

The condition that m2
j = 3⇡G is a requirement on the form of the terms Aj and Bj that

are determined by the GFT action: if Bj/Aj 6= 3⇡G for some j, then it follows that the
correct Friedmann equations are not recovered in the classical limit. Note also that this
should be understood as a definition of G which arises as a hydrodynamic parameter and it
is thus a function of the microscopic GFT parameters, and not as an interpretation of the
microscopic parameters. This is an important conceptual point since this identification
has no reason to be valid in a generic regime of the dynamics (e.g., for non-condensate
GFT states) and may be di↵erent in other settings.

So, if all m2
j = 3⇡G, then the generalised Friedmann equations of the GFT condensate

become, in the classical limit,
✓
V 0

V

◆2

=
V 00

V
= 12⇡G, (81)

which are exactly the Friedmann equations of general relativity for a spatially flat FLRW
space-time with a massless scalar field �, used as a relational time (see Appendix A 1 for
details).

The solution to these equations of motion is the standard one of classical general
relativity,

V = Voe
±
p
12⇡G�, (82)

as expected, with the sign in the exponent depending on whether the universe is expanding
or contracting, and Vo depending on the initial conditions.

D. Single Spin Condensates

The other case where the equations of motion for V (�) can be solved exactly, and
for generic initial conditions, is when only one ⇢j is non-zero, which corresponds to a
condensate wave function that is very sharply (infinitely) peaked in j,

�j(�) = 0, for all j 6= jo. (83)

Then the sum over j in all of the expressions trivializes and an exact solution can be
found which includes quantum corrections.
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~ classical Friedmann dynamics in GR 
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~ classical Friedmann dynamics in GR 
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Newton constant) - flat FRW

(here written neglecting matter contribution)

• very early times: very small volume - QG interactions subdominant

quantum bounce         
(no big bang singularity)!
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effective phantom-like dark energy (of pure QG origin)

+ asymptotic De Sitter universe

• "phenomenological" approach (simplified GFT interactions):

• late times: as universe expands, interactions become more relevant, until they drive evolution
accelerated cosmological expansion
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FIG. 3. The behaviour of w in the two modes case, where both modes have only one interaction

term. Blue solid line shows the case where �11 < �21, while for red dashed line we have �11 =

�21. Black dotted lines show w = 1 and the phantom divide w = �1. Parameters are same as in

figure 1 with additional ones are �1 = �10�8
, µ1 = 0, µ2 = 0, n1 = n2 = 6 and �2 = �9.5⇥ 10�8

for �11 < �21, �2 = �9.5725⇥ 10�8 for �11 = �21.

One may then worry about whether this e↵ective phantom energy, like in many field

theoretic models, leads to a Big Rip singularity at later times also in our model. We will

discuss this issue in the next section, showing that the e↵ective energy density ⇢ , defined

from the equation of state w, remains bounded in our model, tending towards to a finite

value at asymptotically large volumes. To see this, we need some further approximation for

the equation of state w, which we anticipate here.

Since �11 < �21, and for large volume we have � ! �11, we see that ⇢2 is nearly a

constant given by ⇢2(�11). Using the solution (43), we get

⇢2(�11) =

 
1

2

r
��2

3

!� 1
2

1

(�21 � �11)
1
2

.

Furthermore, when � ! �11 the first mode ⇢1 would be much larger than ⇢2, hence in

computing the total volume we can ignore ⇢2 and let V = V1⇢21. Inserting this approximate

expression back in the expression for w, we get

w = �1�
b

V
, (47)

where b = 4V2⇢2(�11) is a constant. Notice again that b > 0, thus we have w < �1, and

the phantom divide w = �1 is being crossed.
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by inserting dynamics of condensate background into expression for universe volume: background universe dynamics

• QG-produced early-time acceleration possible M. De Cesare, A. Pithis, M. Sakellariadou, '17; M. De Sousa, A. Barrau, K. Martineau, '23 
T. Landstätter, L. Marchetti, DO, to appear

• intermediate times: large volume - QG interactions still subdominant
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we can compute the dynamical eqns for volume and matter perturbations, using perturbed hydrodynamic eqns, with classical ones. For instance, for the second quantized field operator, we have seen that

� = h�̂i�, so

�� = � h�̂i� =


�N

N̄
�̄+ N̄@⇡��✓�o

�

⇡�=⇡̃�

. (4.16)

The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =

2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:

�00⇢�o + 2µ�o�
0

⇢�o
�r2�⇢�o = 0 = �✓00�o + 2µ�o�✓

0

�o �r2�✓�o . (4.17)

Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
�✓0�o = �✓00�o + µ�o�✓

0

�o , (k ! 0) , (4.18)

whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =

�V

V̄
�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0

�

⇡�=⇡̃�

, (k ! 0) , (4.20)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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with identifications:

eqn for volume perturbations:

where correct Lorentzian signature is obtained if:

and modulus can equivalently be written in terms of the integration constants Qj and Ej
as

✓̄0j(x
0,⇡�) =

�

2
+

Qj(⇡�)

⇢̄2j (x
0,⇡�)

(3.13a)

(⇢̄2j )
0(x0,⇡�) = Ej(⇡�)�

Q2

j (⇡�)

⇢̄2j (x
0,⇡�)

+ µ2

j (⇡�)⇢̄
2

j (x
0,⇡�) ' µ2

j (⇡�)⇢̄
2

j (x
0,⇡�) , (3.13b)

where µ2

j (⇡�) ⌘ (�)⌘2j (⇡�) � �2/4 (we have dropped the superscript (�) for notation sim-

plicity) and with the last approximate equality being valid for large densities ⇢̄j � 1.

First order. The first order equations, instead, are

0 = �⇢00j (x,⇡�) + Re↵2r2�⇢j(x,⇡�)� (�)⌘2j (⇡�)�⇢j(x,⇡�)

�
⇥
�✓0j(x,⇡�)

�
2✓̄0j(x

0,⇡�)� �
�
� Im↵2r2�✓j(x,⇡�)

⇤
⇢̄j(x

0,⇡�) , (3.14a)

0 = �✓00j (x,⇡�)⇢̄j(x
0,⇡�) + ✓̄00j (x

0,⇡�)�⇢j(x,⇡�) + 2�✓0j(x,⇡�)⇢̄
0

j(x
0,⇡�)

+ 2✓̄0j(x
0,⇡�)�⇢

0

j(x,⇡�)� ��⇢0j(x,⇡�) + Re↵2[r2�✓j(x,⇡�)]⇢̄j(x
0,⇡�)

� (�)�2

j �⇢j(x,⇡�) + Im↵2r2�⇢j(x,⇡�) . (3.14b)

The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-

ture of equation (3.14a), one can see that the di↵erential operator acting on ⇢, let us call

it ⇤↵ ⌘ (@2

0
+ Re↵2r2), has a signature dictated by the sign of Re↵2. Furthermore, we

notice that for Re↵2 = �1, ⇤↵ = ⇤, with ⇤ being the d’Alambert operator. The condition

Re↵2 = �1, means

Re↵2 =
⇡2
x

6✏z2
0

�
�2r � �2i

�
' � ⇡2

x�
2

i

3✏2⇡2

0

= �1 , (3.15a)

and can only be achieved of course if �2i � �2r . The above equality ⇡2
x�

2

i = 3✏2⇡2

0
seem in

fact a very natural choice for the parameters of the peaking functions12. If equation (3.15a)

is satisfied, then one also has

| Im↵2| = 2

3

⇡2
x�r|�i|
✏2⇡2

0

' 2
�r
|�i|

⌧ 1 , (3.15b)

which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as

0 = ⇢̄j(x
0,⇡�)

"
�✓00j (x,⇡�) + 2�✓0j(x,⇡�)

⇢̄0j(x
0,⇡�)

⇢̄j(x0,⇡�)
+ Re↵2r2�✓j(x,⇡�)

#

+ �⇢j(x,⇡�)


✓̄00j (x

0,⇡�) + [2✓̄0j(x
0,⇡�)� �]

�⇢0j(x,⇡�)

�⇢j(x,⇡�)

�
+ Im↵2r2�⇢j(x,⇡�) , (3.16)

12However, as we will discuss in more detail below, there could be compelling physical arguments for a

di↵erent choice.
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< 0

(in regime: large volume, negligible TGFT interactions, single spin mode)

Perturbed volume evolution. As before, let us assume that we are in the case of single
representation label dominance (assumption DC2). Then, the average perturbed volume
reads

�V (x, ⇡̃�) ' 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢̄�o(x, ⇡̃�) , (4.7)

where we have used the peaking properties in ⇡� of the condensate wavefunction (4.5). Now,
let us take a time derivative of the above quantity. We have

�V 0(x, ⇡̃�) = 2V�o ⇢̄
0

�o(x
0, ⇡̃�)�⇢�o(x, ⇡̃�) + 2V�o ⇢̄�o(x

0, ⇡̃�)�⇢
0

�o(x, ⇡̃�)

' µ�o(⇡̃�)�V (x, ⇡̃�) + 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢

0

�o(x, ⇡̃�) ,

where in the second line we have used the large ⇢̄�o behavior16 ⇢̄0�o ' µ�o ⇢̄�o . Taking one
further derivative and using the above equation together with (3.17a), we find

�V 00 � 2µ�o�V
0 +Re↵r2�V + �V ((�)⌘2j � µ2

j ) = 0 . (4.8)

Recall also that, by consistency with the background equations, we have that µ2

j ' (�)⌘2j ,
thus leading to the simplified form

�V 00 � 2µ�o�V
0 +Re↵r2�V = �V 00 � 3H�V 0 +Re↵r2�V = 0 . (4.9)

From the above equation we notice, in particular, that in order to have a Lorentz signature
for the equation of physical perturbations we need to require Re↵ < 0, which in turn implies
�2i > �2r (see assumption KC1). Moreover, in the extreme case in which �2i � �2r , and when
⇡2
x�

2

i = 3✏2⇡2

0
(in which case the parameters of the peaking functions are chosen of the same

magnitude), we have

Re↵2 =
⇡2
x

6✏z2
0

�
�2r � �2i

�
' � ⇡2

x�
2

i

3✏2⇡2

0

= �1 , (4.10)

which in turn implies that the second order di↵erential operator appearing in (4.9) can be
recast in terms of a ⇤ operator.

By comparing equations (4.9) and (A.21), however, we conclude that the e↵ective evo-
lution of the perturbed volume obtained from our quantum gravity model does not match the
classical GR one, in general. An important di↵erence lies in the pre-factor of the Laplacian
term of the equation17, being (in general) respectively Re↵ and / V̄ 4/3 in equations (4.9)
and (A.21). We will comment on the possible implications of this mismatch in Section 5.

In the super-horizon limit k ! 0 (where k represents the modulus of the modes as-
sociated to a spatial Fourier transform of the perturbed volume), thus for long-wavelength
perturbations, equation (4.9) admits two solutions: a constant one, and one of the form
�V / V̄ . The latter becomes dominant as the universe expands, i.e. at large universe
volumes. From the results in Appendix A (see equation (A.15) and the discussion below
equation (A.21)), we see that this dominant solution actually coincide with the GR one in
the limit k ! 0. Thus, we conclude that the theory matches the predicted dynamics of GR
in the super-horizon regime, at late cosmological times and large universe volume (which is
also when the background dynamics reproduces the Friedmann one).

16For concreteness, we are considering large positive times x0, so that only the positive root of equation
(3.13b) is important.

17Notice, however, that the general spatial di↵erential structure of the equations is the same, thus implying
that in the limit of k ! 1 (with all the remaining quantities kept constant), the two equations are equivalent.
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and standard D'Alambertian is obtained for specific state parameters only

• volume perturbations dynamics only matches GR in superhorizon (k--> 0) regime (otherwise wrong scaling of k^2 term)
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the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
�✓0�o = �✓00�o + µ�o�✓

0

�o , (k ! 0) , (4.18)

whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =
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�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0
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⇡�=⇡̃�

, (k ! 0) , (4.20)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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with classical ones. For instance, for the second quantized field operator, we have seen that
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then
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N̄
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V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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with identifications:

eqn for volume perturbations:

where correct Lorentzian signature is obtained if:

and modulus can equivalently be written in terms of the integration constants Qj and Ej
as

✓̄0j(x
0,⇡�) =

�

2
+

Qj(⇡�)

⇢̄2j (x
0,⇡�)

(3.13a)

(⇢̄2j )
0(x0,⇡�) = Ej(⇡�)�

Q2

j (⇡�)

⇢̄2j (x
0,⇡�)

+ µ2

j (⇡�)⇢̄
2

j (x
0,⇡�) ' µ2

j (⇡�)⇢̄
2

j (x
0,⇡�) , (3.13b)

where µ2

j (⇡�) ⌘ (�)⌘2j (⇡�) � �2/4 (we have dropped the superscript (�) for notation sim-

plicity) and with the last approximate equality being valid for large densities ⇢̄j � 1.

First order. The first order equations, instead, are

0 = �⇢00j (x,⇡�) + Re↵2r2�⇢j(x,⇡�)� (�)⌘2j (⇡�)�⇢j(x,⇡�)

�
⇥
�✓0j(x,⇡�)

�
2✓̄0j(x

0,⇡�)� �
�
� Im↵2r2�✓j(x,⇡�)

⇤
⇢̄j(x

0,⇡�) , (3.14a)

0 = �✓00j (x,⇡�)⇢̄j(x
0,⇡�) + ✓̄00j (x

0,⇡�)�⇢j(x,⇡�) + 2�✓0j(x,⇡�)⇢̄
0

j(x
0,⇡�)

+ 2✓̄0j(x
0,⇡�)�⇢

0

j(x,⇡�)� ��⇢0j(x,⇡�) + Re↵2[r2�✓j(x,⇡�)]⇢̄j(x
0,⇡�)

� (�)�2

j �⇢j(x,⇡�) + Im↵2r2�⇢j(x,⇡�) . (3.14b)

The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-

ture of equation (3.14a), one can see that the di↵erential operator acting on ⇢, let us call

it ⇤↵ ⌘ (@2

0
+ Re↵2r2), has a signature dictated by the sign of Re↵2. Furthermore, we

notice that for Re↵2 = �1, ⇤↵ = ⇤, with ⇤ being the d’Alambert operator. The condition

Re↵2 = �1, means

Re↵2 =
⇡2
x

6✏z2
0

�
�2r � �2i

�
' � ⇡2

x�
2

i

3✏2⇡2

0

= �1 , (3.15a)

and can only be achieved of course if �2i � �2r . The above equality ⇡2
x�

2

i = 3✏2⇡2

0
seem in

fact a very natural choice for the parameters of the peaking functions12. If equation (3.15a)

is satisfied, then one also has

| Im↵2| = 2

3

⇡2
x�r|�i|
✏2⇡2

0

' 2
�r
|�i|

⌧ 1 , (3.15b)

which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as

0 = ⇢̄j(x
0,⇡�)

"
�✓00j (x,⇡�) + 2�✓0j(x,⇡�)

⇢̄0j(x
0,⇡�)

⇢̄j(x0,⇡�)
+ Re↵2r2�✓j(x,⇡�)

#

+ �⇢j(x,⇡�)


✓̄00j (x

0,⇡�) + [2✓̄0j(x
0,⇡�)� �]

�⇢0j(x,⇡�)

�⇢j(x,⇡�)

�
+ Im↵2r2�⇢j(x,⇡�) , (3.16)

12However, as we will discuss in more detail below, there could be compelling physical arguments for a

di↵erent choice.
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< 0

(in regime: large volume, negligible TGFT interactions, single spin mode)

Perturbed volume evolution. As before, let us assume that we are in the case of single
representation label dominance (assumption DC2). Then, the average perturbed volume
reads

�V (x, ⇡̃�) ' 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢̄�o(x, ⇡̃�) , (4.7)

where we have used the peaking properties in ⇡� of the condensate wavefunction (4.5). Now,
let us take a time derivative of the above quantity. We have

�V 0(x, ⇡̃�) = 2V�o ⇢̄
0

�o(x
0, ⇡̃�)�⇢�o(x, ⇡̃�) + 2V�o ⇢̄�o(x

0, ⇡̃�)�⇢
0

�o(x, ⇡̃�)

' µ�o(⇡̃�)�V (x, ⇡̃�) + 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢

0

�o(x, ⇡̃�) ,

where in the second line we have used the large ⇢̄�o behavior16 ⇢̄0�o ' µ�o ⇢̄�o . Taking one
further derivative and using the above equation together with (3.17a), we find

�V 00 � 2µ�o�V
0 +Re↵r2�V + �V ((�)⌘2j � µ2

j ) = 0 . (4.8)

Recall also that, by consistency with the background equations, we have that µ2

j ' (�)⌘2j ,
thus leading to the simplified form

�V 00 � 2µ�o�V
0 +Re↵r2�V = �V 00 � 3H�V 0 +Re↵r2�V = 0 . (4.9)

From the above equation we notice, in particular, that in order to have a Lorentz signature
for the equation of physical perturbations we need to require Re↵ < 0, which in turn implies
�2i > �2r (see assumption KC1). Moreover, in the extreme case in which �2i � �2r , and when
⇡2
x�

2

i = 3✏2⇡2

0
(in which case the parameters of the peaking functions are chosen of the same

magnitude), we have

Re↵2 =
⇡2
x

6✏z2
0

�
�2r � �2i

�
' � ⇡2

x�
2

i

3✏2⇡2

0

= �1 , (4.10)

which in turn implies that the second order di↵erential operator appearing in (4.9) can be
recast in terms of a ⇤ operator.

By comparing equations (4.9) and (A.21), however, we conclude that the e↵ective evo-
lution of the perturbed volume obtained from our quantum gravity model does not match the
classical GR one, in general. An important di↵erence lies in the pre-factor of the Laplacian
term of the equation17, being (in general) respectively Re↵ and / V̄ 4/3 in equations (4.9)
and (A.21). We will comment on the possible implications of this mismatch in Section 5.

In the super-horizon limit k ! 0 (where k represents the modulus of the modes as-
sociated to a spatial Fourier transform of the perturbed volume), thus for long-wavelength
perturbations, equation (4.9) admits two solutions: a constant one, and one of the form
�V / V̄ . The latter becomes dominant as the universe expands, i.e. at large universe
volumes. From the results in Appendix A (see equation (A.15) and the discussion below
equation (A.21)), we see that this dominant solution actually coincide with the GR one in
the limit k ! 0. Thus, we conclude that the theory matches the predicted dynamics of GR
in the super-horizon regime, at late cosmological times and large universe volume (which is
also when the background dynamics reproduces the Friedmann one).

16For concreteness, we are considering large positive times x0, so that only the positive root of equation
(3.13b) is important.

17Notice, however, that the general spatial di↵erential structure of the equations is the same, thus implying
that in the limit of k ! 1 (with all the remaining quantities kept constant), the two equations are equivalent.
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and standard D'Alambertian is obtained for specific state parameters only

• volume perturbations dynamics only matches GR in superhorizon (k--> 0) regime (otherwise wrong scaling of k^2 term)

L. Marchetti, DO, '21

eqn for scalar field can be obtained in same way:

(in regime: large volume, negligible TGFT interactions, single spin mode)

effective scalar field

Perturbed scalar field evolution. Similarly to what we did for the volume operator,
we can study perturbations to the scalar field quantities. Notice, however, that results
about perturbations on the matter sector depend on how extensive variables are matched
with classical ones. For instance, for the second quantized field operator, we have seen that
� = h�̂i�, so

�� = � h�̂i� =


�N

N̄
�̄+ N̄@⇡��✓�o

�

⇡�=⇡̃�

. (4.17)

The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =
2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:

�00⇢�o + 2µ�o�
0

⇢�o
+Re↵r2�⇢�o = 0 = �✓00�o + 2µ�o�✓

0

�o +Re↵r2�✓�o . (4.18)

Here, consistently to what was done in the previous sections, we have used ⇢̄0�o ' µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .
Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, see equation (A.17)) we can conclude that the evolution equation for
the scalar field perturbations does not match, in general, with the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-
lutions to our equations and to the GR ones do match in the super-horizon regime (long
wavelength limit). To see this explicitly, notice that in this case the equation satisfied by
�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
�✓0�o = �✓00�o + µ�o�✓

0

�o , (k ! 0) , (4.19)

whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.20)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write
�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider
c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =

�V

V̄
�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0

�

⇡�=⇡̃�

, (k ! 0) , (4.21)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20, it
satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical mo-

mentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other hand, if

we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.22)

with the equations for �V being already described in the previous subsection. In order to
have a consistent definition of the momentum, however, we should require ��0 = �⇡�, which,
in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.23)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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Perturbed scalar field evolution. Similarly to what we did for the volume operator,
we can study perturbations to the scalar field quantities. Notice, however, that results
about perturbations on the matter sector depend on how extensive variables are matched
with classical ones. For instance, for the second quantized field operator, we have seen that
� = h�̂i�, so
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. (4.17)

The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =
2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:
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Here, consistently to what was done in the previous sections, we have used ⇢̄0�o ' µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .
Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, see equation (A.17)) we can conclude that the evolution equation for
the scalar field perturbations does not match, in general, with the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-
lutions to our equations and to the GR ones do match in the super-horizon regime (long
wavelength limit). To see this explicitly, notice that in this case the equation satisfied by
�✓�o becomes
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whose general solution is
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�1 , (k ! 0) , (4.20)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write
�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20, it
satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical mo-

mentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other hand, if

we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then
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with the equations for �V being already described in the previous subsection. In order to
have a consistent definition of the momentum, however, we should require ��0 = �⇡�, which,
in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.23)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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Perturbed scalar field evolution. Similarly to what we did for the volume operator,
we can study perturbations to the scalar field quantities. Notice, however, that results
about perturbations on the matter sector depend on how extensive variables are matched
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The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =
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Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, see equation (A.17)) we can conclude that the evolution equation for
the scalar field perturbations does not match, in general, with the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-
lutions to our equations and to the GR ones do match in the super-horizon regime (long
wavelength limit). To see this explicitly, notice that in this case the equation satisfied by
�✓�o becomes
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whose general solution is
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with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write
�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider
c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have
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�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0

�

⇡�=⇡̃�

, (k ! 0) , (4.21)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20, it
satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical mo-

mentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other hand, if

we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.22)

with the equations for �V being already described in the previous subsection. In order to
have a consistent definition of the momentum, however, we should require ��0 = �⇡�, which,
in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.23)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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with the ingredient satisfying same equation:

Perturbed scalar field evolution. Similarly to what we did for the volume operator,
we can study perturbations to the scalar field quantities. Notice, however, that results
about perturbations on the matter sector depend on how extensive variables are matched
with classical ones. For instance, for the second quantized field operator, we have seen that
� = h�̂i�, so

�� = � h�̂i� =


�N

N̄
�̄+ N̄@⇡��✓�o

�

⇡�=⇡̃�

. (4.17)

The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =
2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:

�00⇢�o + 2µ�o�
0

⇢�o
+Re↵r2�⇢�o = 0 = �✓00�o + 2µ�o�✓

0

�o +Re↵r2�✓�o . (4.18)

Here, consistently to what was done in the previous sections, we have used ⇢̄0�o ' µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .
Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, see equation (A.17)) we can conclude that the evolution equation for
the scalar field perturbations does not match, in general, with the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-
lutions to our equations and to the GR ones do match in the super-horizon regime (long
wavelength limit). To see this explicitly, notice that in this case the equation satisfied by
�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
�✓0�o = �✓00�o + µ�o�✓

0

�o , (k ! 0) , (4.19)

whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.20)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write
�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider
c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =

�V

V̄
�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0

�

⇡�=⇡̃�

, (k ! 0) , (4.21)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20, it
satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical mo-

mentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other hand, if

we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.22)

with the equations for �V being already described in the previous subsection. In order to
have a consistent definition of the momentum, however, we should require ��0 = �⇡�, which,
in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.23)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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Perturbed scalar field evolution. Similarly to what we did for the volume operator,
we can study perturbations to the scalar field quantities. Notice, however, that results
about perturbations on the matter sector depend on how extensive variables are matched
with classical ones. For instance, for the second quantized field operator, we have seen that
� = h�̂i�, so

�� = � h�̂i� =


�N

N̄
�̄+ N̄@⇡��✓�o

�

⇡�=⇡̃�

. (4.17)

The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =
2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:

�00⇢�o + 2µ�o�
0

⇢�o
+Re↵r2�⇢�o = 0 = �✓00�o + 2µ�o�✓

0

�o +Re↵r2�✓�o . (4.18)

Here, consistently to what was done in the previous sections, we have used ⇢̄0�o ' µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .
Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, see equation (A.17)) we can conclude that the evolution equation for
the scalar field perturbations does not match, in general, with the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-
lutions to our equations and to the GR ones do match in the super-horizon regime (long
wavelength limit). To see this explicitly, notice that in this case the equation satisfied by
�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
�✓0�o = �✓00�o + µ�o�✓

0

�o , (k ! 0) , (4.19)

whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.20)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write
�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider
c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =

�V

V̄
�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0

�

⇡�=⇡̃�

, (k ! 0) , (4.21)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20, it
satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical mo-

mentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other hand, if

we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.22)

with the equations for �V being already described in the previous subsection. In order to
have a consistent definition of the momentum, however, we should require ��0 = �⇡�, which,
in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.23)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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• also effective scalar field dynamics only matches GR in superhorizon (k--> 0) regime (otherwise wrong scaling of k^2 term)

L. Marchetti, DO, '21



we can compute the dynamical eqns for volume and matter perturbations, using perturbed hydrodynamic eqns, with classical ones. For instance, for the second quantized field operator, we have seen that

� = h�̂i�, so

�� = � h�̂i� =


�N

N̄
�̄+ N̄@⇡��✓�o

�

⇡�=⇡̃�

. (4.16)

The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =

2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:

�00⇢�o + 2µ�o�
0

⇢�o
�r2�⇢�o = 0 = �✓00�o + 2µ�o�✓

0

�o �r2�✓�o . (4.17)

Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
�✓0�o = �✓00�o + µ�o�✓

0

�o , (k ! 0) , (4.18)

whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =

�V

V̄
�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0

�

⇡�=⇡̃�

, (k ! 0) , (4.20)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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with classical ones. For instance, for the second quantized field operator, we have seen that

� = h�̂i�, so

�� = � h�̂i� =


�N

N̄
�̄+ N̄@⇡��✓�o

�

⇡�=⇡̃�

. (4.16)

The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =

2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:

�00⇢�o + 2µ�o�
0

⇢�o
�r2�⇢�o = 0 = �✓00�o + 2µ�o�✓

0

�o �r2�✓�o . (4.17)

Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
�✓0�o = �✓00�o + µ�o�✓

0

�o , (k ! 0) , (4.18)

whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =

�V

V̄
�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0

�

⇡�=⇡̃�

, (k ! 0) , (4.20)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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with identifications:

eqn for volume perturbations:

where correct Lorentzian signature is obtained if:

and modulus can equivalently be written in terms of the integration constants Qj and Ej
as

✓̄0j(x
0,⇡�) =

�

2
+

Qj(⇡�)

⇢̄2j (x
0,⇡�)

(3.13a)

(⇢̄2j )
0(x0,⇡�) = Ej(⇡�)�

Q2

j (⇡�)

⇢̄2j (x
0,⇡�)

+ µ2

j (⇡�)⇢̄
2

j (x
0,⇡�) ' µ2

j (⇡�)⇢̄
2

j (x
0,⇡�) , (3.13b)

where µ2

j (⇡�) ⌘ (�)⌘2j (⇡�) � �2/4 (we have dropped the superscript (�) for notation sim-

plicity) and with the last approximate equality being valid for large densities ⇢̄j � 1.

First order. The first order equations, instead, are

0 = �⇢00j (x,⇡�) + Re↵2r2�⇢j(x,⇡�)� (�)⌘2j (⇡�)�⇢j(x,⇡�)

�
⇥
�✓0j(x,⇡�)

�
2✓̄0j(x

0,⇡�)� �
�
� Im↵2r2�✓j(x,⇡�)

⇤
⇢̄j(x

0,⇡�) , (3.14a)

0 = �✓00j (x,⇡�)⇢̄j(x
0,⇡�) + ✓̄00j (x

0,⇡�)�⇢j(x,⇡�) + 2�✓0j(x,⇡�)⇢̄
0

j(x
0,⇡�)

+ 2✓̄0j(x
0,⇡�)�⇢

0

j(x,⇡�)� ��⇢0j(x,⇡�) + Re↵2[r2�✓j(x,⇡�)]⇢̄j(x
0,⇡�)

� (�)�2

j �⇢j(x,⇡�) + Im↵2r2�⇢j(x,⇡�) . (3.14b)

The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-

ture of equation (3.14a), one can see that the di↵erential operator acting on ⇢, let us call

it ⇤↵ ⌘ (@2

0
+ Re↵2r2), has a signature dictated by the sign of Re↵2. Furthermore, we

notice that for Re↵2 = �1, ⇤↵ = ⇤, with ⇤ being the d’Alambert operator. The condition

Re↵2 = �1, means

Re↵2 =
⇡2
x

6✏z2
0

�
�2r � �2i

�
' � ⇡2

x�
2

i

3✏2⇡2

0

= �1 , (3.15a)

and can only be achieved of course if �2i � �2r . The above equality ⇡2
x�

2

i = 3✏2⇡2

0
seem in

fact a very natural choice for the parameters of the peaking functions12. If equation (3.15a)

is satisfied, then one also has

| Im↵2| = 2

3

⇡2
x�r|�i|
✏2⇡2

0

' 2
�r
|�i|

⌧ 1 , (3.15b)

which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as

0 = ⇢̄j(x
0,⇡�)

"
�✓00j (x,⇡�) + 2�✓0j(x,⇡�)

⇢̄0j(x
0,⇡�)

⇢̄j(x0,⇡�)
+ Re↵2r2�✓j(x,⇡�)

#

+ �⇢j(x,⇡�)


✓̄00j (x

0,⇡�) + [2✓̄0j(x
0,⇡�)� �]

�⇢0j(x,⇡�)

�⇢j(x,⇡�)

�
+ Im↵2r2�⇢j(x,⇡�) , (3.16)

12However, as we will discuss in more detail below, there could be compelling physical arguments for a

di↵erent choice.
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< 0

(in regime: large volume, negligible TGFT interactions, single spin mode)

Perturbed volume evolution. As before, let us assume that we are in the case of single
representation label dominance (assumption DC2). Then, the average perturbed volume
reads

�V (x, ⇡̃�) ' 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢̄�o(x, ⇡̃�) , (4.7)

where we have used the peaking properties in ⇡� of the condensate wavefunction (4.5). Now,
let us take a time derivative of the above quantity. We have

�V 0(x, ⇡̃�) = 2V�o ⇢̄
0

�o(x
0, ⇡̃�)�⇢�o(x, ⇡̃�) + 2V�o ⇢̄�o(x

0, ⇡̃�)�⇢
0

�o(x, ⇡̃�)

' µ�o(⇡̃�)�V (x, ⇡̃�) + 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢

0

�o(x, ⇡̃�) ,

where in the second line we have used the large ⇢̄�o behavior16 ⇢̄0�o ' µ�o ⇢̄�o . Taking one
further derivative and using the above equation together with (3.17a), we find

�V 00 � 2µ�o�V
0 +Re↵r2�V + �V ((�)⌘2j � µ2

j ) = 0 . (4.8)

Recall also that, by consistency with the background equations, we have that µ2

j ' (�)⌘2j ,
thus leading to the simplified form

�V 00 � 2µ�o�V
0 +Re↵r2�V = �V 00 � 3H�V 0 +Re↵r2�V = 0 . (4.9)

From the above equation we notice, in particular, that in order to have a Lorentz signature
for the equation of physical perturbations we need to require Re↵ < 0, which in turn implies
�2i > �2r (see assumption KC1). Moreover, in the extreme case in which �2i � �2r , and when
⇡2
x�

2

i = 3✏2⇡2

0
(in which case the parameters of the peaking functions are chosen of the same

magnitude), we have

Re↵2 =
⇡2
x

6✏z2
0

�
�2r � �2i

�
' � ⇡2

x�
2

i

3✏2⇡2

0

= �1 , (4.10)

which in turn implies that the second order di↵erential operator appearing in (4.9) can be
recast in terms of a ⇤ operator.

By comparing equations (4.9) and (A.21), however, we conclude that the e↵ective evo-
lution of the perturbed volume obtained from our quantum gravity model does not match the
classical GR one, in general. An important di↵erence lies in the pre-factor of the Laplacian
term of the equation17, being (in general) respectively Re↵ and / V̄ 4/3 in equations (4.9)
and (A.21). We will comment on the possible implications of this mismatch in Section 5.

In the super-horizon limit k ! 0 (where k represents the modulus of the modes as-
sociated to a spatial Fourier transform of the perturbed volume), thus for long-wavelength
perturbations, equation (4.9) admits two solutions: a constant one, and one of the form
�V / V̄ . The latter becomes dominant as the universe expands, i.e. at large universe
volumes. From the results in Appendix A (see equation (A.15) and the discussion below
equation (A.21)), we see that this dominant solution actually coincide with the GR one in
the limit k ! 0. Thus, we conclude that the theory matches the predicted dynamics of GR
in the super-horizon regime, at late cosmological times and large universe volume (which is
also when the background dynamics reproduces the Friedmann one).

16For concreteness, we are considering large positive times x0, so that only the positive root of equation
(3.13b) is important.

17Notice, however, that the general spatial di↵erential structure of the equations is the same, thus implying
that in the limit of k ! 1 (with all the remaining quantities kept constant), the two equations are equivalent.
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and standard D'Alambertian is obtained for specific state parameters only

• volume perturbations dynamics only matches GR in superhorizon (k--> 0) regime (otherwise wrong scaling of k^2 term)

L. Marchetti, DO, '21

• analysis for both background dynamics and effective volume/scalar perturbations 
can be extended to small-volume/early times regime R. Dekhil, F. Greco, S. Liberati, DO, to appear

eqn for scalar field can be obtained in same way:

(in regime: large volume, negligible TGFT interactions, single spin mode)

effective scalar field

Perturbed scalar field evolution. Similarly to what we did for the volume operator,
we can study perturbations to the scalar field quantities. Notice, however, that results
about perturbations on the matter sector depend on how extensive variables are matched
with classical ones. For instance, for the second quantized field operator, we have seen that
� = h�̂i�, so

�� = � h�̂i� =


�N

N̄
�̄+ N̄@⇡��✓�o

�

⇡�=⇡̃�

. (4.17)

The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =
2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:

�00⇢�o + 2µ�o�
0

⇢�o
+Re↵r2�⇢�o = 0 = �✓00�o + 2µ�o�✓

0

�o +Re↵r2�✓�o . (4.18)

Here, consistently to what was done in the previous sections, we have used ⇢̄0�o ' µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .
Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, see equation (A.17)) we can conclude that the evolution equation for
the scalar field perturbations does not match, in general, with the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-
lutions to our equations and to the GR ones do match in the super-horizon regime (long
wavelength limit). To see this explicitly, notice that in this case the equation satisfied by
�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
�✓0�o = �✓00�o + µ�o�✓

0

�o , (k ! 0) , (4.19)

whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.20)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write
�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider
c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =

�V

V̄
�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0

�

⇡�=⇡̃�

, (k ! 0) , (4.21)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20, it
satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical mo-

mentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other hand, if

we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.22)

with the equations for �V being already described in the previous subsection. In order to
have a consistent definition of the momentum, however, we should require ��0 = �⇡�, which,
in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.23)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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Perturbed scalar field evolution. Similarly to what we did for the volume operator,
we can study perturbations to the scalar field quantities. Notice, however, that results
about perturbations on the matter sector depend on how extensive variables are matched
with classical ones. For instance, for the second quantized field operator, we have seen that
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the fact that µ�o ' (�)⌘�o .
Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, see equation (A.17)) we can conclude that the evolution equation for
the scalar field perturbations does not match, in general, with the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-
lutions to our equations and to the GR ones do match in the super-horizon regime (long
wavelength limit). To see this explicitly, notice that in this case the equation satisfied by
�✓�o becomes
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with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write
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�� = � h�̂i =

�V

V̄
�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0

�

⇡�=⇡̃�

, (k ! 0) , (4.21)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20, it
satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical mo-

mentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other hand, if

we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then
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with the equations for �V being already described in the previous subsection. In order to
have a consistent definition of the momentum, however, we should require ��0 = �⇡�, which,
in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.23)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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term (scaling as V̄ 4/3, see equation (A.17)) we can conclude that the evolution equation for
the scalar field perturbations does not match, in general, with the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-
lutions to our equations and to the GR ones do match in the super-horizon regime (long
wavelength limit). To see this explicitly, notice that in this case the equation satisfied by
�✓�o becomes
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�1 , (k ! 0) , (4.20)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write
�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider
c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20, it
satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical mo-

mentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other hand, if

we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then
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with the equations for �V being already described in the previous subsection. In order to
have a consistent definition of the momentum, however, we should require ��0 = �⇡�, which,
in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.23)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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with the ingredient satisfying same equation:

Perturbed scalar field evolution. Similarly to what we did for the volume operator,
we can study perturbations to the scalar field quantities. Notice, however, that results
about perturbations on the matter sector depend on how extensive variables are matched
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term (scaling as V̄ 4/3, see equation (A.17)) we can conclude that the evolution equation for
the scalar field perturbations does not match, in general, with the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-
lutions to our equations and to the GR ones do match in the super-horizon regime (long
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with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20, it
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with the equations for �V being already described in the previous subsection. In order to
have a consistent definition of the momentum, however, we should require ��0 = �⇡�, which,
in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.23)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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• also effective scalar field dynamics only matches GR in superhorizon (k--> 0) regime (otherwise wrong scaling of k^2 term)

L. Marchetti, DO, '21



Further results

• correct GR dynamics of higher-momenta (but still sub-planckian) perturbations (volume and scalar field) 
can be recovered by extended construction, involving more details of discrete causal structure:

• extended TGFT condensate of both timelike and spacelike quantum tetrahedra (previously only spacelike ones)

3

FIG. 1. Left: clock ω0 propagating across spacelike tetrahe-
dron (equivalently, along timelike dual edge) connecting the
dual vertices v and w. Right: rods ωi propagating across
timelike tetrahedron (equivalently, along spacelike dual edge)
connecting the dual vertices v and w. Propagation of matter
data across spacelike (resp. timelike) tetrahedra, or timelike
(resp. spacelike) dual edges is encoded in the kinetic kernel
K+ (resp. K→), hence the restrictions (5).

The reasons for considering coherent states are twofold.
First, they allow to systematically implement a mean-
field approximation, and thus the simplest form of coarse-
graining of the QG theory [67]. Second, it has been shown
[37, 68, 69] that coherent states lead to small relative fluc-
tuations of geometric and matter field operators, which
is essential for a semi-classical interpretation of the dy-
namics. Furthermore, in virtue of their simple collective
behavior, these states o!er a transparent way of connect-
ing macroscopic quantities to microscopic ones, as we will
see explicitly below. More precisely, we consider states
of the form

∣∣”;x0
,x

〉
= N!e

ω̂→ →+ +→ε̂+ϑ̂”→ →+ϑ̂#+ +→ϑ̂$ |→↑ ,
(6)

where N! is a normalization factor and |→↑ = |→↑+↓ |→↑↑
is the F-vacuum. In the above expression, the one-body
operators

ω̂ ↔ ωω+;x0,pω
· ε̂†

+, ϑ̂ ↔ ϑω→;x0,x,pω
· ε̂†

↑, (7)

generate a background condensate state in the extended
Fock space of the form

∣∣ω;x0
, pϖ

〉
↓
∣∣ϑ ;x0

,x, pϖ
〉
= NωNεe

ω̂→ + →ε̂ |→↑ , (8)

with
∣∣ω;x0

, pϖ

〉
and

∣∣ϑ ;x0
,x, pϖ

〉
representing spacelike

and timelike condensates, respectively. The spacelike
ωω+;x0,pω

and timelike ϑω→;x0,x,pω
condensate wavefunc-

tions are localized around ϖ
0 = x

0 and ϖ
0 = x

0
,ω = x,

respectively. Furthermore, they are similarly localized in
ϱ-Fourier space (ϱ ↗ ςϖ) around an arbitrary scalar field
momentum pϖ. In practice, this is achieved by assuming
that they both factorize into fixed (Gaussian, see [44])
peaking functions and into reduced condensate wavefunc-
tions, ω̃ and ϑ̃ , respectively.3 The peaking properties of

3
We note that both the peaking properties of the states and the ki-

netic coupling (5) manifestly reflect our choice of physical frame.

A di!erent choice of relational frame would a!ect both these

aspects of our construction.

the states are collectively represented by the multi-labels
ε±, respectively, see [66] for more details.
Requiring ω̃ (resp. ϑ̃) to contain only gauge-invariant

data, the spacelike (resp. timelike) condensate wavefunc-
tion can be seen as a distribution of geometric and mat-
ter data on a 3–surface (resp. (2+1)–surface) localized at
relational time x0 (resp. relational point (x0

,x)). There-
fore, averages of operators on such relationally localized
states can be seen as e!ective relational observables [37].
Relational homogeneity of the background structures is
then imposed by assuming that ω̃ and ϑ̃ only depend on
the clock variable ϖ

0. Furthermore, isotropy is imposed
by requiring ω̃ and ϑ̃ to depend only on a single spacelike4

representation label φ ↘ R. Under these assumptions, we
have ω̃ = ω̃ϱ(ϖ0

,ςϖ) and ϑ̃ = ϑ̃ϱ(ϖ0
,ςϖ).

Inhomogeneities in (6) are encoded in the operators
↼̂#↓ ↑, ˆ↼$, and +↓↼̂% which are in generalm-body op-
erators, with integer m > 1. These produce quantum en-
tanglement5 within and between the spacelike and time-
like sectors. For the remainder, we choose m = 2, antic-
ipating that, under our assumptions, this is su&cient to
capture the physics of scalar, isotropic and slightly inho-
mogeneous cosmological perturbations. Higher m-body
operators would o!er more involved forms of entangle-
ment and could be required for describing phenomenolog-
ically richer systems (e.g. involving anisotropies). How-
ever, following the arguments of [66], these would lead to
further dynamical freedom discussed below and result in
more involved dynamical equations which might be di&-
cult to treat analytically. We therefore leave a treatment
of such operators open for future research. Explicitly, the
three 2-body operators are defined as further

↼̂# = ε̂
†
+ · ↼# · ε̂†

+, (9a)

ˆ↼$ = ε̂
†
+ · ↼$ · ε̂†

↑, (9b)

↼̂% = ε̂
†
↑ · ↼% · ε̂†

↑ . (9c)

The kernels ↼#, ↼$ and ↼% are in general bi-local,
non-factorized (hence entangling) functions of the re-
spective GFT field domains, determined by the mean-
field dynamics we study below. Imposing isotropy6

4
This is a non-trivial requirement for ω̃ , which can in principle

carry spacelike (ε) and timelike (ϑ) representation labels [29, 42].
5
This “perspective-neutral” [70] entanglement is defined with re-

spect to the kinematical (Fock) tensor product structure (TPS).

This is expected to be inherited by the physical Hilbert space,

due to the lack of redundant spacetime information in GFT.

Thus, contrary to what happens for gravitational theories [70–

74], one would expect this kinematical notion of entanglement

to also be physical. In any case, we note that in this paper we

do not go beyond the mean-field level. Thus, we work with the

kinematical TPS, so that within our approximations, the above

notion of entanglement is by construction physical.
6
This condition, although restrictive, is compatible with the fact

that we will only study isotropic geometric observables.

key role of entanglement between timelike and spacelike components

• background dynamics unaffected (and matching GR at large volumes/late-times)

• extended TGFT with both timelike and spacelike fields (creating timelike and spacelike tetrahedra) with kinetic kernels:

2

mogeneities of cosmological observables emerge from en-
tanglement between the quantum geometric degrees of
freedom of the model. Thus, we also provide a concrete
realization of the general expectation that non-trivial ge-
ometries are associated with quantum gravitational en-
tanglement [49–59]. This is achieved as follows:

1. We utilize the rich causal structure of the com-
pletion [29, 38] of the Barrett-Crane (BC) GFT
model [60–63], which provides a GFT quantization of
first-order Palatini gravity, to causally couple a phys-
ical Lorentzian reference frame to the GFT model.

2. We represent slightly inhomogeneous cosmological ge-
ometries via entangled states

∣∣!;x0
,x

〉
. We study

their perturbative dynamics using mean-field methods
[32–38, 44].

3. We obtain e”ective relational cosmological observables
by computing expectation values of appropriate op-
erators on the states

∣∣!;x0
,x

〉
. We study in detail

the dynamics of cosmological inhomogeneities emerg-
ing from the above entanglement, determining their
classical limit and characterizing quantum e”ects.

We will discuss these steps in detail, one at a time, in
each of the next three sections.

THE BC MODEL WITH LORENTZIAN FRAME

We consider a minimal extension of the BC GFT model
characterized by a spacelike (+) and timelike (→) sec-
tor [29]. The model is described by two fields ω± ↑
ω(gv, X±,ω). Closure and simplicity constraints [29] are
imposed on the ω±, facilitating their excitations to be in-
terpreted as quantum spacelike and timelike tetrahedra,
respectively. Here, gv = (g1, g2, g3, g4) ↓ SL(2,C)4 and
X± is a timelike (+), resp. spacelike (→) normal vector to
the tetrahedra [29]. Finally, ω = (εµ

,ϑ) ↓ R5 represents
the values of 5 minimally coupled massless free (MCMF)
scalar fields discretized on dual vertices2, which consti-
tute the matter content of the system.

The dynamics of the model are specified by an action
S[ω̄,ω] = K[ω̄,ω] + V [ω̄,ω], where K and V represent
kinetic and interaction terms. In particular, K = K+ +
K→, with

K± = ω̄± · K(X)
± · ω± , (1)

where · represents an integration over the full GFT field
domain. The bi-local kinetic kernels

K(X)
± = ϖ(X(v)

± →X
(w)
± )K±(gv, gw;!

2
vwω) , (2)

2
The ω are coupled so that the GFT Feynman amplitudes cor-

respond to simplicial gravity path integrals with MCMF scalar

fields [34, 64, 65].

where !2
vwω ↑

(
(εµ

v → ε
µ
w)

2
, (ϑv → ϑw)2

)
, encode infor-

mation about the propagation of geometry and matter
data between neighbouring 4-simplices (denoted v and
w) and clearly show that the Xω are non-dynamical. For
further details, see [66].
The interaction V is local in ω, non-local in the group

theoretic variables and represents any possible gluing of
five tetrahedra with arbitrary signature to form a 4-
simplex [29, 66].
The Fock space F of the model can be constructed by

tensoring the Fock spaces associated to the two di”erent
sectors, i.e. F ↑ F+ ↔ F→, with

F± ↑
↑⊕

N=0

sym
(
H(1)

± ↔ ...↔H(N)
±

)
, (3)

constructed out of the one-particle Hilbert spaces H±,
see [66] for further details. The F± can be generated by
repeated action of the creation operators ω̂†

± ↑ ω̂
†
± ↔ ↓

on the Fock vacua |↗↘± annihilated by ω̂±. Creation and
annihilation operators satisfy

[
ω̂±(ω), ω̂†

±(ω
↔)
]
= ϖ

(n)(ω →ω↔) ± , (4)

where ± represents the identity on F± satisfying closure
and simplicity constraints.

The four scalar fields ε
µ with µ ↓ {0, ..., 3} will be

used to construct a physical Lorentzian reference frame,
allowing us to describe the system in a relational manner.
More precisely, ε0 serves as a relational clock and ε

i with
i ↓ {1, 2, 3} serve as relational rods. The field ϑ will be
assumed to dominate the energy-momentum budget of
the system, being slightly inhomogeneous with respect
to the rods.

Importantly, the manifestly causal nature of the min-
imally extended BC GFT model allows us, for the first
time, to consistently implement the Lorentzian properties
of the physical frame at the QG level. Indeed, at a clas-
sical, discrete geometric level, a clock propagates along
timelike dual edges, while rods propagate along spacelike
dual edges. These conditions can be imposed strongly at
the quantum gravity level by requiring that (see Fig. 1)

K+ = K+

(
gv, gw; (ε

0
v → ε

0
w)

2
, (ϑv → ϑw)

2
)
, (5a)

K→ = K→
(
gv, gw; |εv → εw|

2
, (ϑv → ϑw)

2
)
. (5b)

Note that no such restriction is assumed for the matter
field ϑ.

ENTANGLED COHERENT PEAKED STATES

Building on a series of previous results [34, 37, 38], we
suggest that the dynamics of scalar cosmological pertur-
bations can be extracted from perturbed coherent states.

A. Jercher, L. Marchetti, A. Pithis, '23,'24

(timelike/spacelike scalar 
frame components)

• dynamics of volume and scalar field perturbations at late times:
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where v is a volume eigenvalue [38] scaling as v → ω
3/2
o

and F is a functional depending on background wavefunc-
tions as well as the functions f and εf . The background
volume satisfies

V̄
→

3V̄
=

2

3
µ+(pω),

(
V̄

→

3V̄

)→

= 0, (19)

which successfully matches classical flat Friedmann dy-
namics in harmonic gauge if µ+(pω) = 3ϑ̄ω/(8M2

Pl) [34,
44, 77]. Since the spacelike and timelike sector decouple
at background level, contributions of timelike tetrahedra
drop out for spacelike observables.

A similar matching can be performed for the pertur-
bations, which completely fixes the functions f and εf

(see [66] for further details). In this way, the perturbed
volume dynamics take the simple form

(
ϖV

V̄

)→→
+ a

4
k
2

(
ϖV

V̄

)
= ↑3H

(
ϖV

V̄

)→
, (20)

where H = V̄
→
/(3V̄ ) is the Hubble parameter and k is the

Fourier mode relative to x. The harmonic term entering
with a

4 constitutes an essential improvement compared
to previous work [44] and is a combined consequence of
the Lorentzian reference frame and the use of entangled
CPSs. The right-hand side of Eq. (20) is reminiscent of
a friction term, which may be associated with a macro-
scopic dissipation phenomenon into the quantum gravi-
tational microstructure (as suggested e.g. in [78]).

Note that as a consequence of the matching, ϖ! is only
time-dependent. This in turn implies that one can reab-
sorb perturbations in the number of timelike quanta in
the background component.8

Analogously, one can study expectation values of the
scalar field operators ω̂± (and their conjugate momenta
”̂±), defined on each of the two sectors [66], to identify a
matter scalar field ϱ!. Since classically the matter field is
an intensive quantity, we combine the expectation values
ω± of the scalar field operators ω̂± through the following
weighted sum9

ϱ! = ω+
N+

N
+ω↑

N↑
N

, (21)

where N is the total (average) number of quanta, and
N± are the (average) number of quanta in each sector.
The above quantity can then be split in a background,
ϱ̄, and perturbed component, ϖϱ.

At the background level, one can show that by requir-
ing ω̄± to be intensive quantities and assuming µ+ > µ↑

8
We note however, that timelike perturbations may indeed be rel-

evant if one were to impose classicality conditions on observables

that are not purely spacelike.
9
This is analogous to how intensive quantities such as chemical

potentials are combined in statistical physics, see [79].

(which enter the background condensate solutions in
Eqs. (12)), ϱ̄ = ω̄+ is completely captured by space-
like data at late times and satisfies the classical equation
of motion ϱ̄

→→ = 0. Moreover, the background matter
analysis unambiguously identifies the peaking momen-
tum value pω with the classical background momentum
of the scalar field, ϑ̄ω [44].
At first order in perturbations, and under the same

assumptions as above, one can write

ϖϱ =

(
ϖN+

N̄+

)
ϱ̄ =

(
ϖV

V̄

)
ϱ̄, (22)

so that, using (20) and ϱ̄
→→ = 0, we obtain

ϖϱ
→→ + a

4
k
2
ϖϱ = Jω, (23)

with the source term Jω given in Eq. (36a).
A crucial quantity in classical cosmology is the comov-

ing curvature perturbation R [80], proportional to the
so-called Mukhanov-Sasaki variable [81–83]. This can
be obtained by combining matter and geometric (non-
exclusively volume) information in a gauge-invariant way.
Restricting the geometric data to volume only, one can
define an analogous “curvature-like” variable

R̃ ↓ ↑ϖV

3V̄
+Hϖϱ

ϱ̄→ , (24)

which is perturbatively gauge-invariant only in the super-
horizon limit. The “curvature-like” variable R̃ can be
constructed within our framework by combining equa-
tions (20) and (23)10 and satisfies

R̃→→ + a
4
k
2R̃ = JR̃, (25)

where JR̃ is presented in Eq. (36b).
Alternatively, Eq. (25) can be recast in conformal time,

commonly used in standard cosmology, by introducing
a harmonic parametrization of the reference fields and
changing to conformal time ς via dς = a

2 dx0, yielding

d2R̃
dς2

+ 2H
dR̃
dς

+ k
2R̃ = JR̃(ς, k), (26)

where H is the conformal Hubble parameter and JR̃(ς, k)
is given in Eq. (38).
Comparing equations (23) and (25) with their classi-

cal GR counterparts (32) and (34), we notice that they
in general contain an additional source term, Jω and JR̃,
respectively. The intrinsically quantum gravitational na-
ture of these terms can be made manifest by solving first
Eq. (20) under the requirement that solutions match the

10
We note that in this case R̃ is constructed out of (e!ectively) re-

lational observables, and thus is gauge invariant by construction.
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where H is the conformal Hubble parameter and JR̃(ς, k)
is given in Eq. (38).
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in general contain an additional source term, Jω and JR̃,
respectively. The intrinsically quantum gravitational na-
ture of these terms can be made manifest by solving first
Eq. (20) under the requirement that solutions match the
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We note that in this case R̃ is constructed out of (e!ectively) re-

lational observables, and thus is gauge invariant by construction.
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Together with a minimally coupled massless scalar field
ω = ω̄ + εω with conjugate momentum ϑω, background
and perturbed equations of motion of the volume and the
scalar field are given by

3

(
V̄

→

3V̄

)2

=
1

2M2
Pl

ϑ̄
2
ω, (30)

and
(
εV

V̄

)→→
→ a

4↑2

(
εV

V̄

)
= 0, (31)

εω
→→ → a

4↑2
εω = 0, (32)

respectively.
To compare classical dynamics with that of GFT, we

define the curvature-like perturbation R̃

R̃ ↓ →εV

3V̄
+Hεω

ω̄→ , (33)

obeying

R̃→→ → a
4↑2R̃ = 0. (34)

Notice that in classical GR, R̃ is explicitly gauge-
dependent.

Source terms

Depicted in Fig. 2, the source terms entering the
perturbed matter and curvature-like equations, (23)
and (25), respectively, are given by

Jω =
(
→3Hω̄+ 2ω̄→)

(
εV

V̄

)→
, (35a)

JR̃ =

[
3H→ 1

4M2
Pl

(
ω̄
2
)→
](

εV

V̄

)→
. (35b)

For solutions of εV/V̄ that match GR in the super-
horizon limit, these terms explicitly evaluate to

Jω = →c

(
a
2
k

MPl

)
ω̄
→
[
→ 3↔

6
ω̄+ 2MPl

]
!

(
7

4

)

↗
(
4H
a2k

)3/4

J7/4

(
a
2
k

2H

)
, (36a)

JR̃ = →c

(
a
2
k

MPl

)
ω̄
→
[

3↔
6
→ ω̄

2MPl

]
!

(
7

4

)

↗
(
4H
a2k

)3/4

J7/4

(
a
2
k

2H

)
, (36b)

where c is an initial condition and Jε are Bessel functions
of the first kind.

Alternatively, the source terms can be expressed in
terms of conformal-longitudinal coordinates. In partic-
ular, JR̃(ϖ, k) is given by

JR̃(ϖ, k) =

[
3H → 1

4M2
Pl

d

dϖ

(
ω̄
2
)] d

dϖ

(
εV

V̄

)
, (37)

which, upon solutions of εV/V̄ , is defined as

JR̃(ϖ, k) = →c

(
k

MPl

)
dω̄

dϖ

[
3↔
6
→ ω̄

2MPl

]
!

(
7

4

)

↗
(

2

kϖ

)3/4

J7/4(kϖ). (38)
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with QG corrections (very small in sub-Planckian regime):

which match GR dynamics



New emergent spacetime physics

• emergent cosmology with quantum bounce (in hydrodynamic approximation)

• effective QG-inflation (with graceful exit) at early times T. Landstätter, L. Marchetti, DO, to appear

L. Sindoni, DO, E. Wilson-Ewing, '16

• effective phantom-like dark energy dynamics 
from QG at late times

X. Pang, DO, '21, '25

• emergent cosmological constant (asymptotic 
deSitter expansion), with value tied to 
parameters governing quantum bounce

X. Pang, DO, '21, '25

T. Landstätter, L. Marchetti, DO, to appear

• corrections to GR dynamics due to physical frame (quantum clock&rods) 

• fluctuations of quantum geometric (cosmological) observables

L. Marchetti, DO, '20, '21

L. Marchetti, DO, '20, '21



New emergent spacetime physics

• effective volume & scalar field dynamics (effective QFT) can be derived at both small-
volume/early times (close to quantum bounce) regime and late times

• very involved equations

R. Dekhil, F. Greco, S. Liberati, DO, to appear

• include: effective potential/mass terms, dissipative terms, QG effects on background, ... 
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New emergent spacetime physics

• effective volume & scalar field dynamics (effective QFT) can be derived at both small-
volume/early times (close to quantum bounce) regime and late times

• very involved equations

R. Dekhil, F. Greco, S. Liberati, DO, to appear

• include: effective potential/mass terms, dissipative terms, QG effects on background, ... 

• both geometry and matter are emergent/collective observables

• Lorentzian structure and symmetry recovered but, in general, depend on:

• TGFT model

• collective vacuum state

• dynamical regime

• properties of physical frame and relational strategy

• corrections to standard QFT and GR come from

• QG effects on background and perturbations dynamics

• peaking properties (physical nature of matter frame)

• corrections to mean field hydrodynamics approximation

• .......

• most, if not all aspects of usual QFT, are approximate (unitarity, locality, ...)



Lessons, broader issues, further directions



1.Cosmology as hydrodynamic approximation of QG system: collective, coarse grained QG dynamics

• focus on cosmological dynamics = focus on few global, collective observables = (result of coarse graining


• cosmological wavefunction on minisuperspace = order parameter labelling collective state, not quantum state

no corresponding Hilbert space of "quantum cosmology" within larger Hilbert space of QG states


• relevant observables are matched with continuum gravitational physics as averages, not eigenvalues
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3. Cosmological evolution is relational evolution with respect to physical clock
• relational evolution requires conditions of (good) clock, implemented as conditions on relevant quantum states


• which clock? possible mismatch between "fundamental" and "effective" clock dofs 

eg: "massless free scalar field" at fundamental level =/= massless free scalar field at effective (hydrodynamic) level
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3. Cosmological evolution is relational evolution with respect to physical clock
• relational evolution requires conditions of (good) clock, implemented as conditions on relevant quantum states
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• cosmological perturbations: spatial localization to be defined also via relational strategy, i.e. by additional rod fields  

4. Also spatial localization and thus local physics, including cosmological perturbations, is relational
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3. Cosmological evolution is relational evolution with respect to physical clock
• relational evolution requires conditions of (good) clock, implemented as conditions on relevant quantum states


• which clock? possible mismatch between "fundamental" and "effective" clock dofs 

eg: "massless free scalar field" at fundamental level =/= massless free scalar field at effective (hydrodynamic) level

• cosmological perturbations: spatial localization to be defined also via relational strategy, i.e. by additional rod fields  

4. Also spatial localization and thus local physics, including cosmological perturbations, is relational

Most principles of QFT and GR are emergent & approximate (locality, unitarity, local causality, ....)
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• fate of cosmological singularity in QG

Physical (cosmological) significance of RG flow and phase transitions

according to (current description in) TGFT condensate cosmology:

Classical cosmological singularity is replaced by “big bounce" scenario

more precisely: Classical cosmological singularity replaced by “big bounce" scenario,

in mean field restriction


of hydrodynamic approximation

within condensate phase

• if result of mean field approximation is reliable even after quantum corrections then, yes, cosmic quantum bounce!

……. if hydrodynamic approximation holds

……. if “quantum spacetime system” stays within condensate phase 

• If hydrodynamic approximation breaks down: e.g because too few “atoms of space” are involved and/
or because fluctuations become too strong

disappearance of continuum spacetime

• If QG system leaves condensate (geometric) phase: e.g. quantum fluctuations drive quantum dynamics towards 
phase transition, QG system reaches criticality

even more radical disappearance of continuum spacetime

“geometrogenesis”necessary: pre-geometric, non-spatiotemporal description in terms of QG “atoms" 
and full understanding of QG phase transition

DO, '07, '17
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no spacetime challenge

Quantum Gravity challenges to Laws

kinematical structures in QG are not spatiotemporal

"dynamical processes" in QG are not spatiotemporal

V. Lam, C. Wuthrich, '23



Humean mosaic:

non-modal, objective facts (of experience)

localized and connected in spacetime

Best system 

balancing simplicity and explanatory power

objective, expressing laws

su
pe

rv
en

ie
nc

e

re
du

ct
io

n

Humeanism - Lewis' best system
• best systems

law of nature = proposition that appears as an axiom 
or theorem of the ‘best system’

best system = true, deductively closed theory which best 
balances simplicity in expression with strength in explanation 
of patterns of "facts" in the world (Humean mosaic)

"best" in metaphysical sense, not "currently best"



Humean mosaic:

non-modal, objective facts (of experience)

localized and connected in spacetime

Best system 

balancing simplicity and explanatory power

objective, expressing laws

su
pe

rv
en

ie
nc

e

re
du

ct
io

n

Humeanism - Lewis' best system
• best systems

law of nature = proposition that appears as an axiom 
or theorem of the ‘best system’

best system = true, deductively closed theory which best 
balances simplicity in expression with strength in explanation 
of patterns of "facts" in the world (Humean mosaic)

"best" in metaphysical sense, not "currently best"

epistemological challenges

epistemic view on laws?



Humean mosaic:

non-modal, objective facts (of experience)

localized and connected in spacetime

Best system 

balancing simplicity and explanatory power

objective, expressing laws

su
pe

rv
en

ie
nc

e

re
du

ct
io

n

quantum gravity challenges

Humeanism - Lewis' best system
• best systems

law of nature = proposition that appears as an axiom 
or theorem of the ‘best system’

best system = true, deductively closed theory which best 
balances simplicity in expression with strength in explanation 
of patterns of "facts" in the world (Humean mosaic)

"best" in metaphysical sense, not "currently best"

epistemological challenges

epistemic view on laws?



Humean mosaic:

non-modal, objective facts (of experience)

localized and connected in spacetime

Best system 

balancing simplicity and explanatory power

objective, expressing laws

su
pe

rv
en

ie
nc

e

re
du

ct
io

n

quantum gravity challenges

quantum challenges

Humeanism - Lewis' best system
• best systems

law of nature = proposition that appears as an axiom 
or theorem of the ‘best system’
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balances simplicity in expression with strength in explanation 
of patterns of "facts" in the world (Humean mosaic)

"best" in metaphysical sense, not "currently best"

epistemological challenges

epistemic view on laws?



no spacetime challenge

Quantum Gravity challenges to Laws

kinematical structures in QG are not spatiotemporal

"dynamical processes" in QG are not spatiotemporal

V. Lam, C. Wuthrich, '23

missing key element of Humean mosaic on which laws supervene



no spacetime challenge

Quantum Gravity challenges to Laws

related "empirical" challenge: 

non-spatiotemporal entities/facts are not directly empirically accessible 
(challenge to Humean attitude - facts as facts of experience)

kinematical structures in QG are not spatiotemporal

"dynamical processes" in QG are not spatiotemporal

V. Lam, C. Wuthrich, '23

missing key element of Humean mosaic on which laws supervene



no spacetime challenge

Quantum Gravity challenges to Laws

related "empirical" challenge: 

non-spatiotemporal entities/facts are not directly empirically accessible 
(challenge to Humean attitude - facts as facts of experience)

kinematical structures in QG are not spatiotemporal

"dynamical processes" in QG are not spatiotemporal

V. Lam, C. Wuthrich, '23

missing key element of Humean mosaic on which laws supervene

epistemological challenges

epistemic view on laws?



no spacetime challenge

Quantum Gravity challenges to Laws

related "empirical" challenge: 

non-spatiotemporal entities/facts are not directly empirically accessible 
(challenge to Humean attitude - facts as facts of experience)

kinematical structures in QG are not spatiotemporal

"dynamical processes" in QG are not spatiotemporal

V. Lam, C. Wuthrich, '23

missing key element of Humean mosaic on which laws supervene

epistemological challenges

epistemic view on laws?

standpoint and general perspective: an epistemic view on physical laws and the role of agency

• laws of nature are the product of intelligent agents; their role is irreducible and not negligible (outside ideaiizations)

• epistemic nature of laws and role of intelligent agents has concrete implication for 
(our understanding and formulation of) fundamental physics

• resonances with (and inclinations towards) epistemic perspectives on QM

• epistemic perspective on (dynamical) quantum causality, 
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epistemological challenges

epistemic view on laws?

standpoint and general perspective: an epistemic view on physical laws and the role of agency

• laws of nature are the product of intelligent agents; their role is irreducible and not negligible (outside ideaiizations)

• epistemic nature of laws and role of intelligent agents has concrete implication for 
(our understanding and formulation of) fundamental physics

• resonances with (and inclinations towards) epistemic perspectives on QM

• epistemic perspective on (dynamical) quantum causality, 
as foundation of quantum geometry

the universe is (largely) what we think it is (or what we model it as)
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but without spacetime a lot of what goes into the usual interpretation of quantum mechanics is unavailable


and the full nature and power of the "participator" is to be understood by analysing Quantum Mechanics itself

it is quantum mechanics that makes the "observer" central in "making reality", a "participator"
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from QG perspective:

• key issues: what are "participators"? what are (quantum) probabilities?

• one call for action: need to understand the "quantum principle" beyond spacetime 

• some suggestions: only laws are "laws of rationality", rather than laws governing events in spacetime? 


only "laws of consistency across perspectives/participators"?



Epistemic-pragmatist intepretations of QM A. Barzegar, DO, 2210.13620 [quant-ph]

• Relational Quantum Mechanics

• Bohr's views

• Bub-Pitowsky Interpretation 

• Müller's interpretation

• Brukner-Zeilinger interpretation

• Healey's pragmatism

• QBism

Brukner, Zeilinger, 2000, 2002; Brukner, 2007

Rovelli, 1996, 2018

Bub, Pitowski, 2010; Bub, 2017

Healey, 2012, 2017

Fuchs, 2010, 2017 

Masanes, Müller, 2011; Müller, 2017

Bohr, 1963

see also J. Pienaar, '21
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Epistemic-pragmatist intepretations of QM: shared elements
A. Barzegar, DO, 2210.13620 [quant-ph]

1. An "epistemic" (as opposed to ontic) view of quantum states 

A quantum state is not in itself real. It represents knowledge, information or 
beliefs of the "observing system" in relation with the "observed system"

2. A metaphysics of participatory realism 

The only subject matter of QM is the relation between two systems (the "observing" system and 
the "observed" system), the two poles of an interaction relation. We should move from an object-
based ontology to a relation-based one. Reality is continuously shaped by the interaction between 
the two involved physical systems. This is a "participatory" and "relational" realism. 

3. An epistemology of perspectival objectivity 

If quantum states are a complete account of physical facts and they are relational, it follows that physical 
facts are necessarily perspectival. There is no perspective-independent fact. Facts (about physical systems) 
are irreducibly relative (to a perspective provided by other physical systems). The only possible form of 
objectivity is a weaker notion, which amounts to constraints on the possible perspectival accounts. 

each of these ingredients deserves and requires much further philosophical analysis

see also J. Pienaar, '21

Which quantum mechanics (or generalization thereof) without spacetime?

resonances with:



Epistemic-pragmatist intepretations of QM: key differences
A. Barzegar, DO, 2210.13620 [quant-ph]

see also J. Pienaar, '21
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A. Barzegar, DO, 2210.13620 [quant-ph]• who (what kind of physical system) can play the role of "observer"?

• any physical system

• "complex (resourceful) enough" physical systems

• full-fledged subjects

RQM

QBism

Bub-Pitowski, Müller, Brukner-Zeilinger, Healey

see also J. Pienaar, '21
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• what are "quantum probabilities"?

• propensities ~ measures of dispositions

• Bayesian probabilities

• objective, evidence-based

• subjective

RQM

QBism

Bub-Pitowski, Brukner-Zeilinger, Healey

see also J. Pienaar, '21
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Epistemic-pragmatist intepretations of QM: key differences
A. Barzegar, DO, 2210.13620 [quant-ph]

• nature of physical laws is relevant for above issues representational vs normative
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Epistemic-pragmatist intepretations of QM: key differences
A. Barzegar, DO, 2210.13620 [quant-ph]

• nature of physical laws is relevant for above issues representational vs normative

• who (what kind of physical system) can play the role of "observer"?

• any physical system

• "complex (resourceful) enough" physical systems

• full-fledged subjects

RQM

QBism

Bub-Pitowski, Müller, Brukner-Zeilinger, Healey

• what are "quantum probabilities"?

• propensities ~ measures of dispositions

• Bayesian probabilities

• objective, evidence-based

• subjective

RQM

QBism

Bub-Pitowski, Brukner-Zeilinger, Healey

• these issues have to be understood without assuming /relying on spacetime

see also J. Pienaar, '21
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Thank you for your attention!


