
Acoustic fluid perturbations in 
first-order phase transitions

Antonino Salvino Midiri

Work (in preparation) in collaboration with:

Chiara Caprini, Simona Procacci & Alberto Roper Pol

«Exploring the early Universe with Gravitational Waves and Primordial Magnetic Fields» 

Nordita – January 22nd 2026



Introduction: phase transitions in the early Universe

LHC Standard Model Higgs 𝜙  has nonzero vev at 𝑇 = 0



Introduction: phase transitions in the early Universe

LHC Standard Model Higgs 𝜙  has nonzero vev at 𝑇 = 0

𝑉0 𝜙 = −
𝜇2

2
𝜙 2 +

𝜆2

4
𝜙 4



LHC Standard Model Higgs 𝜙  has nonzero vev at 𝑇 = 0

𝑉0 𝜙 = −
𝜇2

2
𝜙 2 +

𝜆2

4
𝜙 4

𝜕𝑉0 𝜙

𝜕 𝜙
= 0

Minimum of the
potential at 𝑇 = 0

Introduction: phase transitions in the early Universe



LHC Standard Model Higgs 𝜙  has nonzero vev at 𝑇 = 0

𝑉0 𝜙 = −
𝜇2

2
𝜙 2 +

𝜆2

4
𝜙 4

𝜕𝑉0 𝜙

𝜕 𝜙
= 0

𝜙  = 𝜇2/𝜆2 ≡ 𝑣 ≠ 0

Minimum of the
potential at 𝑇 = 0

vev

Introduction: phase transitions in the early Universe



LHC Standard Model Higgs 𝜙  has nonzero vev at 𝑇 = 0

In the primordial plasma
at finite temperature

Introduction: phase transitions in the early Universe

?



LHC Standard Model Higgs 𝜙  has nonzero vev at 𝑇 = 0

Thermal QFT
𝑉𝑒𝑓𝑓 = 𝑉0 𝜙 + 𝐷2 𝜙 2𝑇2 + ⋯In the primordial plasma

at finite temperature

Introduction: phase transitions in the early Universe



LHC Standard Model Higgs 𝜙  has nonzero vev at 𝑇 = 0

Thermal QFT
𝑉𝑒𝑓𝑓 = 𝑉0 𝜙 + 𝐷2 𝜙 2𝑇2 + ⋯

dominant contribution 
at high temperature

In the primordial plasma
at finite temperature

Introduction: phase transitions in the early Universe



LHC Standard Model Higgs 𝜙  has nonzero vev at 𝑇 = 0

Thermal QFT
𝑉𝑒𝑓𝑓 = 𝑉0 𝜙 + 𝐷2 𝜙 2𝑇2 + ⋯

dominant contribution 
at high temperature

Minimum of the
potential at high 𝑇

𝜕𝑉𝑒𝑓𝑓 𝜙 , 𝑇

𝜕 𝜙
= 0 𝜙  = 0

In the primordial plasma
at finite temperature

Introduction: phase transitions in the early Universe



LHC Standard Model Higgs 𝜙  has nonzero vev at 𝑇 = 0

Thermal QFT
𝑉𝑒𝑓𝑓 = 𝑉0 𝜙 + 𝐷2 𝜙 2𝑇2 + ⋯

dominant contribution 
at high temperature

Minimum of the
potential at high 𝑇

𝜕𝑉𝑒𝑓𝑓 𝜙 , 𝑇

𝜕 𝜙
= 0 𝜙  = 0

In the primordial plasma
at finite temperature

As temperature decreases the Higgs 
vev goes from zero to 𝑣 ≠ 0

Introduction: phase transitions in the early Universe



LHC Standard Model Higgs 𝜙  has nonzero vev at 𝑇 = 0

Thermal QFT
𝑉𝑒𝑓𝑓 = 𝑉0 𝜙 + 𝐷2 𝜙 2𝑇2 + ⋯

dominant contribution 
at high temperature

Minimum of the
potential at high 𝑇

𝜕𝑉𝑒𝑓𝑓 𝜙 , 𝑇

𝜕 𝜙
= 0 𝜙  = 0

In the primordial plasma
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As temperature decreases the Higgs 
vev goes from zero to 𝑣 ≠ 0

Electroweak Spontaneous 
Symmetry Breaking (EWSSB)
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The way in which the transition from the symmetric phase (zero vev) to the 
broken phase (nonzero vev) occurs depends on 𝑉𝑒𝑓𝑓

Let us consider the Standard Model case [9203203]

If 𝐸 ≠ 0
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In the Standard Model the EW 
phase transition is a crossover 
(𝐸 ≠ 0 but small)

However in BSM theories we can 
easily have first-order phase transitions
(e. g. in SUSY already at tree level)
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Explaining matter excess over antimatter requires baryon asymmetry (BAU problem)

A possible solution → EW baryogenesis

See recent review by Jorinde van de Vis et al. [2508.09989]

A. Sakharov (1967) → dynamical baryogenesis mechanism requires three conditions:
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First-Order Phase Transitions occur through the nucleation of broken phase bubbles

EW sphalerons → Baryon number violation

CKM matrix (or BSM physics) → C and CP violation

Bubble wall motion → departure from thermal equilibrium

Morrissey & Ramsey-Musolf [1206.2942]
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[Nucl. Phys. B 79 (1974) 276, 2010.10525, 2108.05357, 2302.00512]

EW Magnetogenesis: Kibble Mechanism

10−16𝐺 < 𝐵 < 10−9𝐺 on Mpc scales  
(lower bounds from blazars and upper from CMB)

EWSSB → 𝜙 2 = 𝜙1
2 + 𝜙2

2 + 𝜙3
2 + 𝜙4

2 = 𝜂2

Higgs takes different values in different broken phase bubbles
→ Vacuum Manifold 𝑆2× 𝑆1

Monopoles and Strings → ∇ ⋅ 𝐵 ≠ 0

‘t Hooft, Vachaspati et al. →

Annihilation of monopoles-antimonopoles pairs with residual  𝐵 ≠ 0
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First-Order Phase Transitions occur through the nucleation of broken phase bubbles

friction between 

scalar and plasma

Espinosa et al. [1004.4187] 

Bubble expansion phase → scalar and fluid profiles are spherically symmetric 

No anisotropic stresses → No gravitational wave production
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First-Order Phase Transitions occur through the nucleation of broken phase bubbles

friction between 

scalar and plasma

Espinosa et al. [1004.4187] 

Bubble collisions break spherical symmetry 

Nonzero anisotropic stresses → scalar and fluid can produce gravitational waves
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Credits: Alberto Roper Pol

Lisa Cosmology Working Group [2403.03723]

Introduction: first-order phase transitions

Sound-shell model

Constant-in-time model

Hindmarsh & Hijazi [1909.10040]

Roper Pol, Caprini et al. [2201.05630]

GW background from EW phase 
transition in the LISA sensitivity band!
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and gravitational waves

Credits: Alberto Roper Pol

Lisa Cosmology Working Group [2403.03723]

Introduction: first-order phase transitions

What is the origin of the 
peak scales in the GW 
spectrum from sound 
waves? 

Are they actually related 
to 𝑅∗ & Δ𝑅∗?



Outline

Fluid perturbations from expanding scalar bubbles

Evolution of the fluid perturbations: 

before, across and after bubble collisions

Consequences for the gravitational wave spectrum 
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Fluid perturbations from expanding scalar bubbles

Tμν
tot = wtot uμuν + ptot gμν + 𝜕μϕ 𝜕νϕ − gμν

1

2
𝜕σϕ 𝜕σϕ 

wtot = w − T
𝜕Veff ϕ, T

𝜕T

ptot = p − Veff(ϕ, T)

൞

∇μTtot
μν

= 0

∇σ 𝜕σϕ −
𝜕V

𝜕ϕ
= 𝛿𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

Understanding the full picture requires lattice simulations
[2407.05826] [1504.03291] [2409.03651][2505.17824]

But how far can we go analytically? 

η uμ𝜕μϕ
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Fluid perturbations from expanding scalar bubbles

Simplifying assumptions:

- Flat spacetime

- Bag equation of state

Tμν
tot = wtot uμuν + ptot gμν + 𝜕μϕ 𝜕νϕ − gμν
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± = etot

± + ptot
± =
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(+) Symmetric phase 
(−) Broken phase 

Beyond? See Giombi et al. [2504.08037] [2409.01426] 
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Fluid perturbations from expanding scalar bubbles

Simplifying assumptions:

- Flat spacetime

- Bag equation of state

- Neglect scalar field profiles

Tμν
tot = wtot uμuν + ptot gμν + 𝜕μϕ 𝜕νϕ − gμν

1

2
𝜕σϕ 𝜕σϕ 

gμν → ημν ptot
± =

1

3
a±T±

4 − 𝜖± 

wtot
± = etot

± + ptot
± =

4

3
a±T±

4

(+) Symmetric phase 
(−) Broken phase 

etot
± = a±T±

4 + 𝜖± 

Beyond? See Giombi et al. [2504.08037] [2409.01426] 



Fluid perturbations from expanding scalar bubbles

Tμν
tot = wtot uμuν + ptot 𝜂μν wtot

± =
4

3
a±T±

4ptot
± =

1

3
a±T±

4 − 𝜖± , 

Perfect fluid
𝜖+ = 𝜖 > 0 
𝜖− = 0𝜕μTtot

μν
= 0



Fluid perturbations from expanding scalar bubbles

Tμν
tot = wtot uμuν + ptot 𝜂μν wtot

± =
4

3
a±T±

4ptot
± =

1

3
a±T±

4 − 𝜖± , 

Perfect fluid 𝜕μTtot
μν

= 0

- Solutions with spherical fluid velocity profile uμ = γ(1, v ොr)

𝛾2 = 1/(1 − 𝑣2)

𝜖+ = 𝜖 > 0 
𝜖− = 0



Fluid perturbations from expanding scalar bubbles

Tμν
tot = wtot uμuν + ptot 𝜂μν wtot

± =
4

3
a±T±

4ptot
± =

1

3
a±T±

4 − 𝜖± , 

Perfect fluid 𝜕μTtot
μν

= 0

- Solutions with spherical fluid velocity profile

- Be r(n) = |𝐫 − 𝐱0
n

| the distance to the nucleation center of the n-th bubble
    𝐱0

(n)
, 𝑡(𝑛) = 𝑡 − 𝑡0

𝑛 the time since it nucleated at 𝑡0
(𝑛)and 𝜉 = 𝑟(𝑛)/𝑡(𝑛)

uμ = γ(1, v ොr)

𝛾2 = 1/(1 − 𝑣2)

𝜖+ = 𝜖 > 0 
𝜖− = 0



Fluid perturbations from expanding scalar bubbles

Tμν
tot = wtot uμuν + ptot 𝜂μν wtot

± =
4

3
a±T±

4ptot
± =

1

3
a±T±

4 − 𝜖± , 

Perfect fluid 𝜕μTtot
μν

= 0

- Solutions with spherical fluid velocity profile

- Be r(n) = |𝐫 − 𝐱0
n

| the distance to the nucleation center of the n-th bubble
    𝐱0

(n)
, 𝑡(𝑛) = 𝑡 − 𝑡0

𝑛 the time since it nucleated at 𝑡0
(𝑛)and 𝜉 = 𝑟(𝑛)/𝑡(𝑛)

- For a superposition of bubbles we have        𝐯 = σn=1
Nb vip ξ  ොr(n)

uμ = γ(1, v ොr)

𝛾2 = 1/(1 − 𝑣2)

𝜖+ = 𝜖 > 0 
𝜖− = 0



Fluid perturbations from expanding scalar bubbles

Tμν
tot = wtot uμuν + ptot 𝜂μν wtot

± =
4

3
a±T±

4ptot
± =

1

3
a±T±

4 − 𝜖± , 

Perfect fluid
𝜖+ = 𝜖 > 0 
𝜖− = 0𝜕μTtot

μν
= 0

- Impose boundary conditions across the wall    
using the bag equation of state𝐯 = ෍

n=1

Nb

vip ξ  ොr(n)



Fluid perturbations from expanding scalar bubbles

Tμν
tot = wtot uμuν + ptot 𝜂μν wtot

± =
4

3
a±T±

4ptot
± =

1

3
a±T±

4 − 𝜖± , 

Perfect fluid
𝜖+ = 𝜖 > 0 
𝜖− = 0𝜕μTtot

μν
= 0

- Impose boundary conditions across the wall    
using the bag equation of state

- Depending on the wall velocity 𝜉𝑤 and the 
phase transition strenght 𝛼 = 𝜖/𝑒𝑛 we find
three types of solution

𝐯 = ෍

n=1

Nb

vip ξ  ොr(n)



Fluid perturbations from expanding scalar bubbles
DEFLAGRATIONS

HYBRIDS

DETONATIONS

𝜉𝑤 < 𝑐𝑠

𝑐𝑠 < 𝜉𝑤 < 𝑣𝐶𝐽(𝛼)

𝜉𝑤 > 𝑣𝐶𝐽(𝛼)

𝑣𝐶𝐽 𝛼 =
1 + 𝛼 2 + 3𝛼

3(1 + 𝛼)

pip install cosmoGW

Espinosa et al. [1004.4187] 



Fluid perturbations from expanding scalar bubbles

𝑣𝐶𝐽 𝛼 =
1 + 𝛼 2 + 3𝛼

3(1 + 𝛼)Properties of the profiles:

- Compact support
      𝑣𝑖𝑝 𝜉 ≠ 0 𝑓𝑜𝑟 𝜉𝑏 < 𝜉 < 𝜉𝑓

pip install cosmoGW



Fluid perturbations from expanding scalar bubbles

𝑣𝐶𝐽 𝛼 =
1 + 𝛼 2 + 3𝛼

3(1 + 𝛼)Properties of the profiles:

- Compact support
      𝑣𝑖𝑝 𝜉 ≠ 0 𝑓𝑜𝑟 𝜉𝑏 < 𝜉 < 𝜉𝑓

- Discontinuity at 𝜉𝑤

pip install cosmoGW



Fluid perturbations from expanding scalar bubbles

𝑣𝐶𝐽 𝛼 =
1 + 𝛼 2 + 3𝛼

3(1 + 𝛼)Properties of the profiles:

- Compact support
      𝑣𝑖𝑝 𝜉 ≠ 0 𝑓𝑜𝑟 𝜉𝑏 < 𝜉 < 𝜉𝑓

- Discontinuity at 𝜉𝑤

- Deflagrations with 𝜉𝑤 close     
to 𝑐𝑠 and hybrids have an   
additional discontinuity at 
𝜉 = 𝑣𝑠ℎ

pip install cosmoGW



Fluid perturbations from expanding scalar bubbles

𝐯 = ෍

n=1

Nb

𝐯(n) = ෍

n=1

Nb

vip ξ  ොr(n)Self-similar profiles in Fourier space

𝐯 n t, 𝐤 = −i t n 3
ei𝐤⋅𝐱0

n
መ𝐤 𝑓′(𝑧)

𝑓 z ≡ k t n = 4π න
0

∞

j0 zξ  ξ vip ξ  dξ 𝑗0 𝑥 = sin 𝑥/𝑥

Kinetic spectrum in Fourier space ∝ 𝑣𝑖 𝑡, 𝒌 𝑣𝑖 𝑡, 𝒌′ ∝ 𝑓′ 𝑧 2



Fluid perturbations from expanding scalar bubbles

𝐯 = ෍

n=1

Nb

𝐯(n) = ෍

n=1

Nb

vip ξ  ොr(n)Self-similar profiles in Fourier space

𝐯 n t, 𝐤 = −i t n 3
ei𝐤⋅𝐱0

n
መ𝐤 𝑓′(𝑧)

𝑓 z ≡ k t n = 4π න
0

∞

j0 zξ  ξ vip ξ  dξ 𝑗0 𝑥 = sin 𝑥/𝑥

Kinetic spectrum in Fourier space ∝ 𝑣𝑖 𝑡, 𝒌 𝑣𝑖 𝑡, 𝒌′ ∝ 𝑓′ 𝑧 2

Self-similar profiles  → 𝑓′ 𝑧 2  → Kinetic spectrum in the bubble expansion phase

Average over stochastic realizations



Fluid perturbations from expanding scalar bubbles
𝐯 n t, 𝐤 = −i t n 3

ei𝐤⋅𝐱0
n

መ𝐤 𝑓′(𝑧)

Properties of |𝑓′ 𝑧 |2

𝑓′(z ≡ k t n ) = −4π න
0

∞

j1 zξ  ξ2 vip ξ  dξ



Fluid perturbations from expanding scalar bubbles
𝐯 n t, 𝐤 = −i t n 3

ei𝐤⋅𝐱0
n

መ𝐤 𝑓′(𝑧)

Properties of |𝑓′ 𝑧 |2

𝑓′(z ≡ k t n ) = −4π න
0

∞

j1 zξ  ξ2 vip ξ  dξ

𝑓′ 𝑧 → 𝑧 −
4𝜋

3
න

𝜉𝑏

𝜉𝑓

𝜉3 𝑣𝑖𝑝 𝜉  𝑑𝜉

Large scales 𝑘 = 𝑧/𝑡(𝑛) → 0

Compact support of 𝑣𝑖𝑝(𝜉)

|𝑓′ 𝑧 |2 → |𝑓0
′|2 𝑧2

Related to causality



Fluid perturbations from expanding scalar bubbles
𝐯 n t, 𝐤 = −i t n 3

ei𝐤⋅𝐱0
n

መ𝐤 𝑓′(𝑧)

Properties of |𝑓′ 𝑧 |2

𝑓′ 𝑧 → 𝑧−2 −4𝜋 𝜉𝑠ℎ sin 𝑧𝜉𝑠ℎ Δ𝑣𝑖𝑝 𝜉𝑠ℎ + 𝜉𝑤 sin 𝑧𝜉𝑤  Δ𝑣𝑖𝑝(𝜉𝑤)

Small scales 𝑘 = 𝑧/𝑡(𝑛) → ∞

From the discontinuities of 𝑣𝑖𝑝(𝜉) |𝑓′ 𝑧 |2 → |𝑓∞
′ |2 𝑧−4

|𝑓′ 𝑧 |𝑒𝑛𝑣
2 → |𝑓𝑒𝑛𝑣

′ |2 𝑧−4

𝑓𝑒𝑛𝑣
′ = 4𝜋 𝜉𝑠ℎ𝑣𝑠ℎ

− + 𝜉𝑤 Δ𝑣𝑖𝑝 𝜉𝑤

𝑓′(z ≡ k t n ) = −4π න
0

∞

j1 zξ  ξ2 vip ξ  dξ



Fluid perturbations from expanding scalar bubbles
𝐯 n t, 𝐤 = −i t n 3

ei𝐤⋅𝐱0
n

መ𝐤 𝑓′(𝑧)Properties of |𝑓′ 𝑧 |2

𝑓′(𝑧) = −4π න
0

∞

j1 zξ  ξ2 vip ξ  dξ

𝑧𝑐𝑟𝑜𝑠𝑠 =
𝑓𝑒𝑛𝑣

′

𝑓0
′

1/3

∝ 𝑧−6

𝛼 = 0.1



Fluid perturbations from expanding scalar bubbles
𝐯 n t, 𝐤 = −i t n 3

ei𝐤⋅𝐱0
n

መ𝐤 𝑓′(𝑧)Properties of |𝑓′ 𝑧 |2

𝑓′(𝑧) = −4π න
0

∞

j1 zξ  ξ2 vip ξ  dξ

𝑧𝑐𝑟𝑜𝑠𝑠 =
𝑓𝑒𝑛𝑣

′

𝑓0
′

1/3

∝ 𝑧−6∝ 𝑧−6

𝑧1 ≈
3𝜋

2
𝜉𝑓 + 𝜉𝑏

−1

Significant deviations from ∼ 𝑧2 begin around

𝛼 = 0.1

(for generic 𝛼 & 𝜉𝑤)



Fluid perturbations from expanding scalar bubbles
𝐯 n t, 𝐤 = −i t n 3

ei𝐤⋅𝐱0
n

መ𝐤 𝑓′(𝑧)Properties of |𝑓′ 𝑧 |2

𝑓′(𝑧) = −4π න
0

∞

j1 zξ  ξ2 vip ξ  dξ

∝ 𝑧−6∝ 𝑧−6∝ 𝑧−6

𝛼 = 0.1

𝑓′(𝑧) 𝑒𝑛𝑣
2 ≈ 𝑓0

′ 2 𝑧2 1 +
𝑧

𝑧1

𝑎1 −
6

𝑎1

(𝜉𝑤≲ 𝑣𝐶𝐽(𝛼)/2)

𝑧1 ≈
3𝜋

2
𝜉𝑓 + 𝜉𝑏

−1

𝑎1 = 4



Fluid perturbations from expanding scalar bubbles
Properties of |𝑓′ 𝑧 |2

𝛼 = 0.1

The ∼ 𝑧−4 begins around

𝑧2 ≈ 𝜋 ×

𝜉𝑓 − 𝜉𝑏
−1

𝜉𝑓 − 𝜉𝑤
−1

𝜉𝑓 − 𝜉𝑏
−1

(𝜉𝑤< 𝑐𝑠)

(𝜉𝑤> 𝑣𝐶𝐽)

(𝑐𝑠 < 𝜉𝑤< 𝑣𝐶𝐽)

𝑧1 ≈
3𝜋

2
𝜉𝑓 + 𝜉𝑏

−1



Fluid perturbations from expanding scalar bubbles
Properties of |𝑓′ 𝑧 |2

𝛼 = 0.1

The ∼ 𝑧−4 begins around

𝜉𝑓 − 𝜉𝑏 ∝ Δ𝑅∗ (sound shell thickness)

(𝜉𝑤< 𝑐𝑠)

(𝜉𝑤> 𝑣𝐶𝐽)

(𝑐𝑠 < 𝜉𝑤< 𝑣𝐶𝐽)

𝑧1 ≈
3𝜋

2
𝜉𝑓 + 𝜉𝑏

−1

𝑧2 ≈ 𝜋 ×

𝜉𝑓 − 𝜉𝑏
−1

𝜉𝑓 − 𝜉𝑤
−1

𝜉𝑓 − 𝜉𝑏
−1



Fluid perturbations from expanding scalar bubbles
Properties of |𝑓′ 𝑧 |2

𝛼 = 0.1

The ∼ 𝑧−4 begins around

𝜉𝑓 − 𝜉𝑏 ∝ Δ𝑅∗ (sound shell thickness)

(𝜉𝑤< 𝑐𝑠)

(𝜉𝑤> 𝑣𝐶𝐽)

(𝑐𝑠 < 𝜉𝑤< 𝑣𝐶𝐽)

𝜉𝑓 − 𝜉𝑤 = 𝜉𝑠ℎ − 𝜉𝑤
distance between
discontinuities
(for hybrids)

𝑧1 ≈
3𝜋

2
𝜉𝑓 + 𝜉𝑏

−1

𝑧2 ≈ 𝜋 ×

𝜉𝑓 − 𝜉𝑏
−1

𝜉𝑓 − 𝜉𝑤
−1

𝜉𝑓 − 𝜉𝑏
−1



Fluid perturbations from expanding scalar bubbles
Properties of |𝑓′ 𝑧 |2

𝛼 = 0.1

(𝜉𝑤< 𝑐𝑠)

(𝜉𝑤> 𝑣𝐶𝐽)

(𝑐𝑠 < 𝜉𝑤< 𝑣𝐶𝐽)

𝑓′(𝑧) 𝑒𝑛𝑣
2 ≈

𝑓0
′ 2 𝑧2 1 +

𝑧

𝑧1

𝑎1
𝛾−2

𝑎1
1 +

𝑧

𝑧2

𝑎2
−𝛾−4

𝑎2

(𝜉𝑤≳ 𝑣𝐶𝐽(𝛼)/2)

𝛾 = 2 1 − 3
log 𝑧2/𝑧𝑐𝑟𝑜𝑠𝑠

log(𝑧2/𝑧1)

𝑧1 ≈
3𝜋

2
𝜉𝑓 + 𝜉𝑏

−1

𝑧2 ≈ 𝜋 ×

𝜉𝑓 − 𝜉𝑏
−1

𝜉𝑓 − 𝜉𝑤
−1

𝜉𝑓 − 𝜉𝑏
−1

𝑎1 = 𝑎2 = 4



Fluid perturbations from expanding scalar bubbles

𝑓′(𝑧) 𝑒𝑛𝑣
2 ≈

𝑓0
′ 2 𝑧2 1 +

𝑧

𝑧1

𝑎1
𝛾−2

𝑎1
1 +

𝑧

𝑧2

𝑎2
−𝛾−4

𝑎2

(𝜉𝑤≳ 𝑣𝐶𝐽(𝛼)/2)

𝛾 = 2 1 − 3
log 𝑧2/𝑧𝑐𝑟𝑜𝑠𝑠

log(𝑧2/𝑧1)

Scales of |𝑓′ 𝑧 |2
𝑧1 ≈

3𝜋

2
𝜉𝑓 + 𝜉𝑏

−1

𝑧2 ≈ 𝜋 ×

𝜉𝑓 − 𝜉𝑏
−1

𝜉𝑓 − 𝜉𝑤
−1

𝜉𝑓 − 𝜉𝑏
−1

(𝜉𝑤< 𝑐𝑠)

(𝑐𝑠 < 𝜉𝑤< 𝑣𝐶𝐽)

(𝜉𝑤> 𝑣𝐶𝐽)

𝑎1 = 𝑎2 = 4



Fluid perturbations from expanding scalar bubbles
Scales of |𝑓′ 𝑧 |2

𝑧1 ≈
3𝜋

2
𝜉𝑓 + 𝜉𝑏

−1

𝑧2 ≈ 𝜋 ×

𝜉𝑓 − 𝜉𝑏
−1

𝜉𝑓 − 𝜉𝑤
−1

𝜉𝑓 − 𝜉𝑏
−1

(𝜉𝑤< 𝑐𝑠)

(𝑐𝑠 < 𝜉𝑤< 𝑣𝐶𝐽)

(𝜉𝑤> 𝑣𝐶𝐽)

[2403.03723]

𝑧2 = 𝜋 × 𝑐𝑠 − 𝜉𝑤
−1

𝑧2 = 𝜋 × 𝜉𝑓 − 𝜉𝑏
−1

Much broader spectrum for hybrids than using

∝ Δ𝑅∗
−1

(Lisa Cosmology
Working Group) 



Fluid perturbations from expanding scalar bubbles
Scales of |𝑓′ 𝑧 |2

Toy models

Approximate the deflagrations with a 
linearly decreasing velocity profile

𝑣 𝜉 = 𝑣𝑐𝑜𝑛𝑠𝑡

𝜉𝑓 − 𝜉

𝜉𝑓 − 𝜉𝑏
(𝜉𝑏< 𝜉 < 𝜉𝑓)

𝑣𝑐𝑜𝑛𝑠𝑡 can be chosen in order to reproduce either the 
small scales 𝑣+  or the large scales 𝑣𝑏  limit of |𝑓′ 𝑧 |2

𝑧1 ≈
3𝜋

2
𝜉𝑓 + 𝜉𝑏

−1

𝑧2 ≈ 𝜋 ×

𝜉𝑓 − 𝜉𝑏
−1

𝜉𝑓 − 𝜉𝑤
−1

𝜉𝑓 − 𝜉𝑏
−1

(𝜉𝑤< 𝑐𝑠)

(𝑐𝑠 < 𝜉𝑤< 𝑣𝐶𝐽)

(𝜉𝑤> 𝑣𝐶𝐽)



Fluid perturbations from expanding scalar bubbles
Scales of |𝑓′ 𝑧 |2

Toy models

Approximate the hybrids with a constant 
velocity profile only between discontinuities 

𝑣 𝜉 = 𝑣𝑐𝑜𝑛𝑠𝑡 (𝜉𝑤< 𝜉 < 𝜉𝑓)

𝑣𝑐𝑜𝑛𝑠𝑡 can be chosen in order to reproduce either the small 
scales 𝑣𝑐ℎ  or the large scales 𝑣𝑓0

′  limit of |𝑓′ 𝑧 |2

𝑧1 ≈
3𝜋

2
𝜉𝑓 + 𝜉𝑏

−1

𝑧2 ≈ 𝜋 ×

𝜉𝑓 − 𝜉𝑏
−1

𝜉𝑓 − 𝜉𝑤
−1

𝜉𝑓 − 𝜉𝑏
−1

(𝜉𝑤< 𝑐𝑠)

(𝑐𝑠 < 𝜉𝑤< 𝑣𝐶𝐽)

(𝜉𝑤> 𝑣𝐶𝐽)



Fluid perturbations from expanding scalar bubbles
Scales of |𝑓′ 𝑧 |2

Toy models

Approximate the detonations with a 
linearly increasing velocity profile

𝑣 𝜉 = 𝑣𝑐𝑜𝑛𝑠𝑡

𝜉 − 𝜉𝑏

𝜉𝑓 − 𝜉𝑏
(𝜉𝑏< 𝜉 < 𝜉𝑓)

𝑣𝑐𝑜𝑛𝑠𝑡 can be chosen in order to reproduce either the 
small scales 𝑣−  or the large scales 𝑣𝑓  limit of |𝑓′ 𝑧 |2

𝑧1 ≈
3𝜋

2
𝜉𝑓 + 𝜉𝑏

−1

𝑧2 ≈ 𝜋 ×

𝜉𝑓 − 𝜉𝑏
−1

𝜉𝑓 − 𝜉𝑤
−1

𝜉𝑓 − 𝜉𝑏
−1

(𝜉𝑤< 𝑐𝑠)

(𝑐𝑠 < 𝜉𝑤< 𝑣𝐶𝐽)

(𝜉𝑤> 𝑣𝐶𝐽)



Fluid perturbations from expanding scalar bubbles

Numerical vs Fits vs Toy models



Evolution of the fluid perturbations: before collisions

𝐯 n t, 𝐤 = −i t n 3
ei𝐤⋅𝐱0

n
መ𝐤 𝑓′(𝑧)

𝑓′(𝑧) = −4π න
0

∞

j1 zξ  ξ2 vip ξ  dξ

Computing the kinetic spectrum in the bubble expansion phase
requires averaging over stochastic realizations

𝑣𝑖 𝑡, 𝒌 𝑣𝑗
∗ 𝑡, 𝒌′

𝒙0
𝑛

, 𝑡0
(𝑛)



Evolution of the fluid perturbations: before collisions

𝐯 n t, 𝐤 = −i t n 3
ei𝐤⋅𝐱0

n
መ𝐤 𝑓′(𝑧)

𝑓′(𝑧) = −4π න
0

∞

j1 zξ  ξ2 vip ξ  dξ

Computing the kinetic spectrum in the bubble expansion phase
requires averaging over stochastic realizations

𝑣𝑖 𝑡, 𝒌 𝑣𝑗
∗ 𝑡, 𝒌′

𝒙0
𝑛 = ෡𝒌𝑖  ෡𝒌𝑗  𝛿 3 𝒌 − 𝒌′  𝑛𝑏 𝑡 𝑡 − 𝑡0

6 𝑓′(𝑧) 2

Average over nucleation locations (homogeneously distributed)

𝑣𝑖 𝑡, 𝒌 𝑣𝑗
∗ 𝑡, 𝒌′

𝒙0
𝑛

, 𝑡0
(𝑛)



Evolution of the fluid perturbations: before collisions

𝐯 n t, 𝐤 = −i t n 3
ei𝐤⋅𝐱0

n
መ𝐤 𝑓′(𝑧)

𝑓′(𝑧) = −4π න
0

∞

j1 zξ  ξ2 vip ξ  dξ

Computing the kinetic spectrum in the bubble expansion phase
requires averaging over stochastic realizations

Average over nucleation times

𝑣𝑖 𝑡, 𝒌 𝑣𝑗
∗ 𝑡, 𝒌′

𝒙0
𝑛

, 𝑡0
(𝑛) = ෡𝒌𝑖  ෡𝒌𝑗  𝛿 3 𝒌 − 𝒌′  𝑛𝑏 𝑡  ×

× න
𝑡𝑐

𝑡

𝑑𝑡0 Γ 𝑡0 𝑡 − 𝑡0
6 𝑓′(𝑧) 2

nucleation rate 𝑧 = 𝑘(𝑡 − 𝑡0)

𝑣𝑖 𝑡, 𝒌 𝑣𝑗
∗ 𝑡, 𝒌′

𝒙0
𝑛

, 𝑡0
(𝑛)



Evolution of the fluid perturbations: before collisions

𝑣𝑖 𝑡, 𝒌 𝑣𝑗
∗ 𝑡, 𝒌′

𝒙0
𝑛

,𝑡0
(𝑛) = ෡𝒌𝑖  ෡𝒌𝑗  𝛿 3 𝒌 − 𝒌′  𝑛𝑏 𝑡 න

𝑡𝑐

𝑡

𝑑𝑡0 Γ 𝑡0 𝑡 − 𝑡0
6 𝑓′(𝑧) 2

Γ 𝑡0 = 𝑝 𝑡0  ℎ(𝑡0)

nucleation probability per unit volume

volume fraction in the symmetric phase

ℎ 𝑡 = exp −
4𝜋

3
න

𝑡𝑐

𝑡

𝑑𝑡0 𝑝 𝑡0  𝜉𝑤
3 𝑡 − 𝑡0

3

𝑝 𝑡 ∼ 𝑒−𝑆(𝑡)



Evolution of the fluid perturbations: before collisions

Γ 𝑡0 = 𝑝 𝑡0  ℎ(𝑡0)

nucleation probability per unit volume

volume fraction in the symmetric phase

ℎ 𝑡 = exp −
4𝜋

3
න

𝑡𝑐

𝑡

𝑑𝑡0 𝑝 𝑡0  𝜉𝑤
3 𝑡 − 𝑡0

3

Exponential nucleation     𝑆 𝑡 ≃ 𝑆 𝑡∗ − 𝛽 𝑡 − 𝑡∗ → 𝑝 𝑡 ≃ 𝑝∗𝑒𝛽(𝑡−𝑡∗)

𝑝 𝑡 ∼ 𝑒−𝑆(𝑡)

Gaussian nucleation         𝑆 𝑡 ≃ 𝑆 𝑡∗ +
1

2
𝛽2 𝑡 − 𝑡∗

2 → 𝑝 𝑡 ≃ 𝑝∗𝑒−
𝛽2

2
𝑡−𝑡∗

2

𝑣𝑖 𝑡, 𝒌 𝑣𝑗
∗ 𝑡, 𝒌′

𝒙0
𝑛

,𝑡0
(𝑛) = ෡𝒌𝑖  ෡𝒌𝑗  𝛿 3 𝒌 − 𝒌′  𝑛𝑏 𝑡 න

𝑡𝑐

𝑡

𝑑𝑡0 Γ 𝑡0 𝑡 − 𝑡0
6 𝑓′(𝑧) 2



Evolution of the fluid perturbations: across collisions

𝑣𝑖 𝑡, 𝒌 𝑣𝑗
∗ 𝑡, 𝒌′

𝒙0
𝑛

,𝑡0
(𝑛) = ෡𝒌𝑖  ෡𝒌𝑗  𝛿 3 𝒌 − 𝒌′

𝑛𝑏 ǁ𝑡

𝛽6
න

ሚ𝑡𝑐

ሚ𝑡

𝑑 ǁ𝑡0 Γ ǁ𝑡0 ǁ𝑡 − ǁ𝑡0
6 𝑓′(𝑧) 2

𝐹𝐿( ǁ𝑡 < ǁ𝑡𝑠𝑤, ෨𝑘)

- Need to average over nucleation and collision times

- We can introduce a normalized lifetime distribution 𝜈( ෨𝑇)

ǁ𝑡 = 𝛽𝑡, ෨𝑘 = 𝑘/𝛽



Evolution of the fluid perturbations: across collisions

𝑣𝑖 𝑡, 𝒌 𝑣𝑗
∗ 𝑡, 𝒌′

𝒙0
𝑛

,𝑡0
(𝑛) = ෡𝒌𝑖  ෡𝒌𝑗  𝛿 3 𝒌 − 𝒌′

𝑛𝑏 ǁ𝑡

𝛽6
න

ሚ𝑡𝑐

ሚ𝑡

𝑑 ǁ𝑡0 Γ ǁ𝑡0 ǁ𝑡 − ǁ𝑡0
6 𝑓′(𝑧) 2

𝐹𝐿( ǁ𝑡 < ǁ𝑡𝑠𝑤, ෨𝑘)

- Need to average over nucleation and collision times

- We can introduce a normalized lifetime distribution 𝜈( ෨𝑇)

𝐹𝐿 ǁ𝑡𝑠𝑤
+ , ෨𝑘 =

𝑛𝑏 ǁ𝑡

𝛽6
න

0

∞

𝑑 ෨𝑇 𝜈 ෨𝑇 ෨𝑇6 𝑓′(෨𝑘 ෨𝑇)
2

ǁ𝑡 = 𝛽𝑡, ෨𝑘 = 𝑘/𝛽

Hindmarsh & Hijazi [1909.10040] 𝜈 ෨𝑇 = −
1

𝛽 𝑛𝑏
 න

ሚ𝑡𝑐

∞

𝑑 ǁ𝑡 𝑝 ǁ𝑡
𝑑ℎ

𝑑 ǁ𝑡
ǁ𝑡 + ෨𝑇

Probability for a bubble to nucleate 
at ǁ𝑡 and disappear at ǁ𝑡 + ෨𝑇



Evolution of the fluid perturbations: across collisions

𝑣𝑖 𝑡, 𝒌 𝑣𝑗
∗ 𝑡, 𝒌′

𝒙0
𝑛

, 𝑡0
(𝑛) = ෡𝒌𝑖  ෡𝒌𝑗  𝛿 3 𝒌 − 𝒌′  𝐹𝐿(𝑡, 𝑘)

Hindmarsh & Hijazi [1909.10040]

𝜈 ෨𝑇 = −
1

𝛽 𝑛𝑏
 න

ሚ𝑡𝑐

∞

𝑑 ǁ𝑡 𝑝 ǁ𝑡
𝑑ℎ

𝑑 ǁ𝑡
ǁ𝑡 + ෨𝑇𝐹𝐿 ǁ𝑡𝑠𝑤

+ , ෨𝑘 =
𝑛𝑏 ǁ𝑡𝑠𝑤

𝛽6
න

0

∞

𝑑 ෨𝑇 𝜈 ෨𝑇 ෨𝑇6 𝑓′(෨𝑘 ෨𝑇)
2

𝐹𝐿 ǁ𝑡 < ǁ𝑡𝑠𝑤, ෨𝑘 =
𝑛𝑏 ǁ𝑡

𝛽6
න

ሚ𝑡𝑐

ሚ𝑡

𝑑 ǁ𝑡0 Γ ǁ𝑡0 ǁ𝑡 − ǁ𝑡0
6 𝑓′(෨𝑘 ෨𝑇)

2



Evolution of the fluid perturbations: across collisions

𝑣𝑖 𝑡, 𝒌 𝑣𝑗
∗ 𝑡, 𝒌′

𝒙0
𝑛

, 𝑡0
(𝑛) = ෡𝒌𝑖  ෡𝒌𝑗  𝛿 3 𝒌 − 𝒌′  𝐹𝐿(𝑡, 𝑘)

Hindmarsh & Hijazi [1909.10040]

𝜈 ෨𝑇 = −
1

𝛽 𝑛𝑏
 න

ሚ𝑡𝑐

∞

𝑑 ǁ𝑡 𝑝 ǁ𝑡
𝑑ℎ

𝑑 ǁ𝑡
ǁ𝑡 + ෨𝑇

න
0

∞

𝑑 ෨𝑇 ෨𝑇3 𝜈 ෨𝑇 = −
3𝛽3

4𝜋𝜉𝑤
3 𝑛𝑏( ǁ𝑡𝑠𝑤)

For any 𝑝 𝑡 !

𝐹𝐿 ǁ𝑡 < ǁ𝑡𝑠𝑤, ෨𝑘 =
𝑛𝑏 ǁ𝑡

𝛽6
න

ሚ𝑡𝑐

ሚ𝑡

𝑑 ǁ𝑡0 Γ ǁ𝑡0 ǁ𝑡 − ǁ𝑡0
6 𝑓′(෨𝑘 ෨𝑇)

2

𝐹𝐿 ǁ𝑡𝑠𝑤
+ , ෨𝑘 =

𝑛𝑏 ǁ𝑡𝑠𝑤

𝛽6
න

0

∞

𝑑 ෨𝑇 𝜈 ෨𝑇 ෨𝑇6 𝑓′(෨𝑘 ෨𝑇)
2



Evolution of the fluid perturbations: across collisions

𝑣𝑖 𝑡, 𝒌 𝑣𝑗
∗ 𝑡, 𝒌′

𝒙0
𝑛

, 𝑡0
(𝑛) = ෡𝒌𝑖  ෡𝒌𝑗  𝛿 3 𝒌 − 𝒌′  𝐹𝐿(𝑡, 𝑘)

Hindmarsh & Hijazi [1909.10040]

𝜈 ෨𝑇 = −
1

𝛽 𝑛𝑏
 න

ሚ𝑡𝑐

∞

𝑑 ǁ𝑡 𝑝 ǁ𝑡
𝑑ℎ

𝑑 ǁ𝑡
ǁ𝑡 + ෨𝑇

න
0

∞

𝑑 ෨𝑇 ෨𝑇3 𝜈 ෨𝑇 = −
3𝛽3

4𝜋𝜉𝑤
3 𝑛𝑏( ǁ𝑡𝑠𝑤)

𝑣𝑟𝑚𝑠
2 ǁ𝑡𝑠𝑤

+ = න
0

∞

𝑑𝑘
𝑘2

2𝜋2
𝐹𝐿 ǁ𝑡𝑠𝑤

+  , ෨𝑘 =
4𝜋

𝛽3𝑉𝑏
න

0

∞

𝜉2𝑣𝑖𝑝
2 𝜉 𝑑𝜉

𝑣𝑟𝑚𝑠
2 of a single velocity profile

𝑉𝑏 =
4𝜋

3

𝜉𝑤

𝛽

3
For any 𝑝 𝑡 !

𝐹𝐿 ǁ𝑡 < ǁ𝑡𝑠𝑤, ෨𝑘 =
𝑛𝑏 ǁ𝑡

𝛽6
න

ሚ𝑡𝑐

ሚ𝑡

𝑑 ǁ𝑡0 Γ ǁ𝑡0 ǁ𝑡 − ǁ𝑡0
6 𝑓′(෨𝑘 ෨𝑇)

2

𝐹𝐿 ǁ𝑡𝑠𝑤
+ , ෨𝑘 =

𝑛𝑏 ǁ𝑡𝑠𝑤

𝛽6
න

0

∞

𝑑 ෨𝑇 𝜈 ෨𝑇 ෨𝑇6 𝑓′(෨𝑘 ෨𝑇)
2



Evolution of the fluid perturbations: across collisions

𝑣𝑟𝑚𝑠
2 ǁ𝑡𝑠𝑤

+ =
4𝜋

𝛽3𝑉𝑏
න

0

∞

𝜉2𝑣𝑖𝑝
2 𝜉 𝑑𝜉

𝑣𝑟𝑚𝑠
2 of a single velocity profile

𝑉𝑏 =
4𝜋

3

𝜉𝑤

𝛽

3

𝑣𝑟𝑚𝑠
2 ǁ𝑡𝑠𝑤

− = 4𝜋 න
0

∞

𝜉2𝑣𝑖𝑝
2 𝜉 𝑑𝜉 න

ሚ𝑡𝑐

ሚ𝑡𝑠𝑤
−

𝑑 ǁ𝑡0 Γ ǁ𝑡0 ǁ𝑡𝑠𝑤
− − ǁ𝑡0

3 = 𝑣𝑟𝑚𝑠
2 ǁ𝑡𝑠𝑤

+

Conservation of 𝑣𝑟𝑚𝑠
2

across collisions?

𝑣𝑖 𝑡, 𝒌 𝑣𝑗
∗ 𝑡, 𝒌′

𝒙0
𝑛

, 𝑡0
(𝑛) = ෡𝒌𝑖  ෡𝒌𝑗  𝛿 3 𝒌 − 𝒌′  𝐹𝐿(𝑡, 𝑘)

𝐹𝐿 ǁ𝑡 < ǁ𝑡𝑠𝑤, ෨𝑘 =
𝑛𝑏 ǁ𝑡

𝛽6
න

ሚ𝑡𝑐

ሚ𝑡

𝑑 ǁ𝑡0 Γ ǁ𝑡0 ǁ𝑡 − ǁ𝑡0
6 𝑓′(෨𝑘 ෨𝑇)

2

𝐹𝐿 ǁ𝑡𝑠𝑤
+ , ෨𝑘 =

𝑛𝑏 ǁ𝑡𝑠𝑤

𝛽6
න

0

∞

𝑑 ෨𝑇 𝜈 ෨𝑇 ෨𝑇6 𝑓′(෨𝑘 ෨𝑇)
2



Evolution of the fluid perturbations: across collisions

𝑣𝑟𝑚𝑠
2 ǁ𝑡𝑠𝑤

+ =
4𝜋

𝛽3𝑉𝑏
න

0

∞

𝜉2𝑣𝑖𝑝
2 𝜉 𝑑𝜉 𝑉𝑏 =

4𝜋

3

𝜉𝑤

𝛽

3

𝑣𝑟𝑚𝑠
2 ǁ𝑡𝑠𝑤

− = 4𝜋 න
0

∞

𝜉2𝑣𝑖𝑝
2 𝜉 𝑑𝜉 න

ሚ𝑡𝑐

ሚ𝑡𝑠𝑤
−

𝑑 ǁ𝑡0 Γ ǁ𝑡0 ǁ𝑡𝑠𝑤
− − ǁ𝑡0

3 = 𝑣𝑟𝑚𝑠
2 ǁ𝑡𝑠𝑤

+



Evolution of the fluid perturbations: across collisions

𝑉𝑏 =
4𝜋

3

𝜉𝑤

𝛽

3

The lifetime distribution average implies conservation of 𝑣𝑟𝑚𝑠
2 across collisions (as the value after 

collisions is the same as in the single velocity profile). We can also in general define an effective initial 
time of the sound wave phase 𝑡𝑠𝑤 at which 𝑣𝑟𝑚𝑠

2  reaches the single-profile value as

𝑣𝑟𝑚𝑠
2 ǁ𝑡𝑠𝑤

+ =
4𝜋

𝛽3𝑉𝑏
න

0

∞

𝜉2𝑣𝑖𝑝
2 𝜉 𝑑𝜉

𝑣𝑟𝑚𝑠
2 ǁ𝑡𝑠𝑤

− = 4𝜋 න
0

∞

𝜉2𝑣𝑖𝑝
2 𝜉 𝑑𝜉 න

ሚ𝑡𝑐

ሚ𝑡𝑠𝑤
−

𝑑 ǁ𝑡0 Γ ǁ𝑡0 ǁ𝑡𝑠𝑤
− − ǁ𝑡0

3 = 𝑣𝑟𝑚𝑠
2 ǁ𝑡𝑠𝑤

+



Evolution of the fluid perturbations: across collisions

𝑉𝑏 =
4𝜋

3

𝜉𝑤

𝛽

3

4𝜋𝜉𝑤
3

3
න

ሚ𝑡𝑐

ሚ𝑡𝑠𝑤

𝑑 ǁ𝑡0 Γ ǁ𝑡0 ǁ𝑡𝑠𝑤 − ǁ𝑡0
3 = 1

𝑣𝑟𝑚𝑠
2 ǁ𝑡𝑠𝑤

−

𝑣𝑟𝑚𝑠
2 ǁ𝑡𝑠𝑤

+ = 1

The lifetime distribution average implies conservation of 𝑣𝑟𝑚𝑠
2 across collisions (as the value after 

collisions is the same as in the single velocity profile). We can also in general define an effective initial 
time of the sound wave phase 𝑡𝑠𝑤 at which 𝑣𝑟𝑚𝑠

2  reaches the single-profile value as

𝑣𝑟𝑚𝑠
2 ǁ𝑡𝑠𝑤

+ =
4𝜋

𝛽3𝑉𝑏
න

0

∞

𝜉2𝑣𝑖𝑝
2 𝜉 𝑑𝜉

𝑣𝑟𝑚𝑠
2 ǁ𝑡𝑠𝑤

− = 4𝜋 න
0

∞

𝜉2𝑣𝑖𝑝
2 𝜉 𝑑𝜉 න

ሚ𝑡𝑐

ሚ𝑡𝑠𝑤
−

𝑑 ǁ𝑡0 Γ ǁ𝑡0 ǁ𝑡𝑠𝑤
− − ǁ𝑡0

3 = 𝑣𝑟𝑚𝑠
2 ǁ𝑡𝑠𝑤

+



Evolution of the fluid perturbations: across collisions

4𝜋𝜉𝑤
3

3
න

ሚ𝑡𝑐

ሚ𝑡𝑠𝑤

𝑑 ǁ𝑡0 Γ ǁ𝑡0 ǁ𝑡𝑠𝑤 − ǁ𝑡0
3 = 1

Effective initial time of the
sound wave phase

Numerically we see that in the limit ǁ𝑡∗ − ǁ𝑡𝑐 ≫ 1

( ǁ𝑡𝑠𝑤− ǁ𝑡𝑐)/( ǁ𝑡∗− ǁ𝑡𝑐) → 1



Evolution of the fluid perturbations: across collisions

Properties of the kinetic spectrum at the time of collisions

Large scales 𝑘 → 0 𝐹𝐿 → 𝑘2𝐹𝐿
(0)

Small scales 𝑘 → ∞ 𝐹𝐿 → 𝑘−4𝐹𝐿
(𝑒𝑛𝑣)

𝐹𝐿
(0)

 & 𝐹𝐿
(𝑒𝑛𝑣)can be computed from |𝑓0

′|2, 𝑓𝑒𝑛𝑣
′ 2, 𝑝(𝑡)

𝐹𝐿 ǁ𝑡𝑠𝑤 , ෨𝑘 =
𝑛𝑏 ǁ𝑡𝑠𝑤

𝛽6
න

0

∞

𝑑 ෨𝑇 𝜈 ෨𝑇 ෨𝑇6 𝑓′(෨𝑘 ෨𝑇)
2



Evolution of the fluid perturbations: across collisions

Properties of the kinetic spectrum at the time of collisions
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Properties of the kinetic spectrum at the time of collisions
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Consequences for the gravitational wave spectrum 

Hindmarsh & Hijazi [1909.10040]

Ω𝐺𝑊 𝜏0, 𝑘 = 3 𝒯𝐺𝑊 ඵ
𝜏∗

min[𝜏0,𝜏𝑓𝑖𝑛] 𝑑𝜏1

𝜏1

𝑑𝜏2

𝜏2
cos 𝑘 𝜏0 − 𝜏1 cos 𝑘 𝜏0 − 𝜏2 𝐸Π(𝑘, 𝜏1, 𝜏2)

UETC for sound-waves with full 𝐹𝐿(𝑡, 𝑘)



Consequences for the gravitational wave spectrum 

Hindmarsh & Hijazi [1909.10040]

Roper Pol, Procacci, Caprini [2308.12943]

Ω𝐺𝑊 𝜏0, 𝑘 = 3 𝒯𝐺𝑊 ඵ
𝜏∗

min[𝜏0,𝜏𝑓𝑖𝑛] 𝑑𝜏1

𝜏1

𝑑𝜏2

𝜏2
cos 𝑘 𝜏0 − 𝜏1 cos 𝑘 𝜏0 − 𝜏2 𝐸Π(𝑘, 𝜏1, 𝜏2)

UETC for sound-waves with full 𝐹𝐿(𝑡, 𝑘)

In the limit of long duration of the sound-waves a good
approximation for the spectral peak is given by



Consequences for the gravitational wave spectrum 

෨𝑘1
𝐺𝑊 ≈ 1.2 × ෨𝑘1

෨𝑘2
𝐺𝑊 ≈ 1.2 × ෨𝑘2

Peak in the GW spectrum related to 
(long sound-wave duration limit):

- sound-shell thickness 
(deflagrations & detonations)

- discontinuities in the 
self-similar profiles

(hybrids)

[Preliminary results]



Conclusions

- The GW spectrum from sound waves (in the sound shell model) can be understood from 
the properties of the self-similar profiles and of the bubble nucleation history

- For hybrids the GW peak scale is related to the distance between discontinuities instead of 
the sound-shell thickness (broader spectrum around the peak)

- An accurate characterization of the full GW spectrum in terms of phase transition 
parameters is necessary for parameter reconstruction at future experiments (e. g. LISA)
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- An accurate characterization of the full GW spectrum in terms of phase transition 
parameters is necessary for parameter reconstruction at future experiments (e. g. LISA)

Thanks for your attention!
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