UNIVERSITE

J DE GENEVE

G E

Acoustic fluid perturbations in
first-order phase transitions

Antonino Salvino Midiri

Work (in preparation) in collaboration with:
Chiara Caprini, Simona Procacci & Alberto Roper Pol

Nordita — January 22nd 2026

I—I_ .Swiss National

Science Foundation «Exploring the early Universe with Gravitational Waves and Primordial Magnetic Fields»



Introduction: phase transitions in the early Universe

LHC —— Standard Model Higgs (¢) has nonzerovevatT =0



Introduction: phase transitions in the early Universe

LHC —— Standard Model Higgs (¢) has nonzerovevatT =0

2 /12
Vo(lph) = =5 1612 + 11"




Introduction: phase transitions in the early Universe

LHC —— Standard Model Higgs (¢) has nonzerovevatT =0
2 2
u A

Vo(ldl) = —7|¢|2 +Z|<I5|4

Minimum of the aVo(lc.bl) —0
potentialatT =0 a|¢| o




Introduction: phase transitions in the early Universe

LHC —— Standard Model Higgs (¢) has nonzerovevatT =0
2 2
u A

Vo(ldl) = —7|¢|2 +Z|<I5|4

Minimum of the aVo(lc.bl) —0
potentialatT =0 a|¢| o

—— || =Vu2/ A2 =v=+0




Introduction: phase transitions in the early Universe

LHC —— Standard Model Higgs (¢) has nonzerovevatT =0

In the primordial plasma
at finite temperature ?



Introduction: phase transitions in the early Universe

LHC —— Standard Model Higgs (¢) has nonzerovevatT =0

In the primordial plasma , Veff — VO(‘qu + D2‘¢‘2T2 + ...

at finite temperature Thermal QFT



Introduction: phase transitions in the early Universe

LHC —— Standard Model Higgs (¢) has nonzerovevatT =0

In the primordial plasma , Veff — VO(‘qu + Dzkblsz + ...

at finite temperature Thermal QFT
dominant contribution

at high temperature



Introduction: phase transitions in the early Universe

LHC —— Standard Model Higgs (¢) has nonzerovevatT =0

In the primordial plasma , Veff — VO(‘qu + DZ‘QMZTZ + ...

at finite temperature Thermal QFT
dominant contribution

at high temperature

Minimum of the aVeff(kPl» T)
potential at high T a|¢|




Introduction: phase transitions in the early Universe

LHC —— Standard Model Higgs (¢) has nonzerovevatT =0

In the primordial plasma , Veff — VO(‘qu + DZ‘QMZTZ + ...

at finite temperature Thermal QFT
dominant contribution

at high temperature

Minimum of the aVeff(kPl» T)
potential at high T a|¢|

As temperature decreases the Higgs
vev goes from zerotov # 0



Introduction: phase transitions in the early Universe

LHC —— Standard Model Higgs (¢) has nonzerovevatT =0

In the primordial plasma , Veff — VO(‘qu + DZ‘QMZTZ + ...

at finite temperature Thermal QFT
dominant contribution
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The way in which the transition from the symmetric phase (zero vev) to the
broken phase (nonzero vev) occurs depends on Vs«

Let us consider the Standard Model case [9203203] ,
A
Vers (191, T) = D2(T? = TDII* — E* T[] + - "

j - T Iy

i

In the Standard Model the EW
| phase transition is a crossover
T=T. / (E # 0 but small)

IfE +0

. , However in BSM theories we can
. / easily have first-order phase transitions
S (e. g.in SUSY already at tree level)
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Explaining matter excess over antimatter requires baryon asymmetry (BAU problem)

8.65+0.09 x 10~11,  (CMB).

ny — Tip 1 np—np | 82-94x1071, (BBN),
S -~ 7.04 Ny -

A. Sakharov (1967) = dynamical baryogenesis mechanism requires three conditions:

1. Baryon number violation.
2. Charge (C) and charge-parity (CP) violation.

3. Departure from thermal equilibrium.

A possible solution - EW baryogenesis

See recent review by Jorinde van de Vis et al. [2508.09989]
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EW sphalerons — Baryon number violation
CKM matrix (or BSM physics) = C and CP violation

Bubble wall motion — departure from thermal equilibrium

<¢p>=0

Bubble Wall —>

Morrissey & Ramsey-Musolf [1206.2942]
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EW Magnetogenesis: Kibble Mechanism

EWSSB - |¢|* = ¢7 + ¢35 + ¢35 + ¢; = n?

Higgs takes different values in causally disconnected zones
- Vacuum Manifold S%x S*

Monopoles and Strings 2 V-B#0
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EW Magnetogenesis: Kibble Mechanism

EWSSB - |¢|* = ¢7 + ¢35 + ¢35 + ¢; = n?

Higgs takes different values in different broken phase bubbles
- Vacuum Manifold S%x S*

Monopoles and Strings 2 V-B#0

2 sin 0,
g

Annihilation of monopoles-antimonopoles pairs with residual B = 0
[Nucl. Phys. B 79 (1974) 276, 2010.10525, 2108.05357, 2302.00512]

t Hooft, Vachaspati etal. » Auw =0uA, — 0, A, —i (0,978, ® — 8,210,9)
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\ friction between
e scalar and plasma . \ v . N
| deflagration hybrid detonation

Espinosa et al. [1004.4187]

Bubble collisions break spherical symmetry

Nonzero anisotropic stresses — scalar and fluid can produce gravitational waves
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Fluid perturbations from expanding scalar bubbles

Evolution of the fluid perturbations:
before, across and after bubble collisions

Consequences for the gravitational wave spectrum
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1
Tpttgt — Wiot uuuv + Ptot guv + au(l) 6\,(]) o guv ( Eaccl) aG(I) )

/ OVere(P, T) \ Ptot = P — Verr(d, T)

Wiot = W — oT

( vuTtlf)\‘)c = () Understanding the full picture requires lattice simulations
[2407.05826] [1504.03291] [2409.03651][2505.17824]

{ o oV
kvc(a CI)) — a_ — 6friction
¢ I But how far can we go analytically?

nutd, ¢



Fluid perturbations from expanding scalar bubbles

1
Tpttgt — Wiot uuuv + Ptot guv + au(l) 6\,(]) o guv ( Eaccl) aG(I) )

Simplifying assumptions:



Fluid perturbations from expanding scalar bubbles

1
T&St — Wiot uuuv + Ptot guv + au(l) a\,(l) o guv ( Eaccl) acd))

Simplifying assumptions:

- Flat spacetime guv = Nuy

Beyond? See Giombietal. [2504.08037]



Fluid perturbations from expanding scalar bubbles

1
T&St — Wiot uuuv + Ptot guv + auq) a\}(l) o guv ( Eaccl) aG(I) )

Simplifying assumptions:

- Flat spacetime guv = Nuy pz_rot _ %aﬂf

€+

. + 4
. (+) Symmetric phase Cir = a+T+ + €+
- Bagequation of state — " Vg oienphase Ot b
+ _ o+
Wiot = ot + Dior = 34+ T4

3

Beyond? See Giombietal. [2504.08037][2409.01426]
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T&St = Wtot UyUy T Prot 8uv T au(l) 0y P — LV E ¢ 0°¢P

Simplifying assumptions:

: 1
- — T
Flat spacetime Suy = Ny pi. = §aiTi‘f — €4
. + 4
. (+) Symmetric phase €. —asl. +€
- Bag equation of state ' (—) Broken phase . tot+ ce A-ll._
Wiot = ot + Diot = 3 zas+ Ty

- Neglect scalar field profiles

Beyond? See Giombietal. [2504.08037][2409.01426]
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1 4
tot _
Tw™ = Weot UpUy + Prot My Piot = 3 ~a, T — €y, Wi = 3 ~a; T}
e, =€>0
V 2 _ )
Perfect fluid auTt%t =0 e_ =0 yr=1/a -7

/

- Solutions with spherical fluid velocity profile u* =vy(1,vT)

- Ber®™ = |r — n)| the distance to the nucleation center of the n-th bubble
xf)“) t(m) =t — (") the time since it nucleated at t( Jand & = r™ /¢

- For a superposition of bubbles we have v = Zrl\llzl vip () P



Fluid perturbations from expanding scalar bubbles

tot _
Tu3 = Weot UpUy T Prot My p;_rot = gaiTJ_f — €4, WtJ—;t = §aiT§
e, =€>0
V
Perfect fluid ﬁuTtL(l)t =0 e_ =0
Np h - Impose boundary conditions across the wall
vV = z Vip ® #(n) using the bag equation of state

n=1



Fluid perturbations from expanding scalar bubbles

tot _ 1 4
Tw™ = Weot UpUy + Prot My Piot = 3 say T — €y, Wigy = 3 ~a; T}
e, =€>0
V
Perfect fluid ﬁuTt%t =0 e_ =0
Np h - Impose boundary conditions across the wall
vV = z Vip ® #(n) using the bag equation of state

n=1
- Depending on the wall velocity ¢, and the

phase transition strenght a = €/e,, we find
three types of solution



Fluid perturbations from expanding scalar bubbles

0.00 025 050 0.75 1.00
§

€W > UC](CZ)

{ ip install cosmo
DEFLAGRATIONS -« - pip install cosmoGW oy = L +a(2 + 3a)
c;(a)
v 0.5 | S
e N L ?ﬂ:g; i 'Ush.!:
\ ® &L=0 /
0.4 I ] Ew =0.3 'CS \J:' _—
HYBRIDS Py . o1 : 5
/‘—‘\0.3_ : ?’“igz i .’;" E’UCJ _
Cs < €W < vC](a) i [~ \‘M—ﬁ = 5::;0:7 \;f ;
£0.2F ¢ c-os 1 / .
4 N £w =0.9 i r_f i
J/ 0.1 \\/ 11
DETONATIONS | ' \/
“ 0.0 \ I;‘- i I 1

Espinosa et al. [1004.4187]



Fluid perturbations from expanding scalar bubbles

pip install cosmoGW 1+ \/a(z + 36()
Properties of the profiles: \ ve(a) = 3+
- Compact support 0.5 ¢ £,=01 L - /!
e w= 0.2 : [
vip(f) #0 for { << < ff 0.4 « §w=0.3 Cs N —
® £,=04 .
G030 &l \ e
= e £,=0.7 1\ / !
S 0.2 ° &=o08 1Y / _
§w =109 10 |
0.1 “7 \\/ g

0.00 025 050 0.75 1.00
§



Fluid perturbations from expanding scalar bubbles

pip install cosmoGW 1+ \/CZ(Z + 3a)
Properties of the profiles: \ vey(@) = V31 + a)

- Compact support 0.5, £ — 0.1 - - /|
L w = 0.2 I I

vip(f) +0 for & <éE< ff 0.4F o szm s ) | _
® (,=04 ,

. . . f'_"\O 3— ® =05 i ,;f EUCJ —
- Discontinuity at &, WO e G006 \;‘ g
o, ® & =07 O\ l
& =09 |/ i

0.1 " \\/ 11
0.0 Nﬁ\\_;m/ 5

0.00 025 050 0.75 1.00
§



Fluid perturbations from expanding scalar bubbles

pip install cosmoGW 1+ \/CZ(Z + 3a)
Properties of the profiles: \ vey(a) = V31 + a)
- Compact support 0.5 o £ =01 ] - /!
° w=0.2 /
Vip(§) # 0 for & <& < 0.4« 03 S N
° £,=04 l .
. o —0.3F. & W e -
- Discontinuity at ¢, Mo S=08 \ |
O, ® &=07 | / i
S 0.2F° =08 1 / -
- Deflagrations with ¢, close Eﬁig \\ _;"/
to cg and hybrids have an 0.1 [ ‘: / |
additional discontinuity at 0.0 5—;&* L L. 1
& = vy 0.00 0.25 0.0 0.7 1.00

3



Fluid perturbations from expanding scalar bubbles

Self-simil files in Fouri ~(n
elr-simitar prof1ites In SOljlrle[nS)[jaCe v = Z V(n) _ z Vip(E) I’( )
V(n) (t, k) — —i [t(n)] elk-XO kf’(Z) n=1 =1
Flz=ke®) = am | o) Evip o) d o) = sin/x
0

Kinetic spectrum in Fourier space o« (v;(t, k)v;(t, k")) o |f'(2)|?



Fluid perturbations from expanding scalar bubbles

. o . Np Np
Self-similar profiles in Fourier space v = Z v — z Vip(E) ~(n)
3 . (n) A
v (k) = —i [tV] elk%o k £/ (2) n=1 n=1
f(z=kt™) = 4 f jo(78) § i () dE jo() = sinx/x
0

Kinetic spectrum in Fourier space o« (v;(t, k)v;(t, k")) o |f'(2)|?

Self-similar profiles — If’(z)l2 — Kinetic spectrum in the bubble expansion phase

Y

Average over stochastic realizations



Fluid perturbations from expanding scalar bubbles
v (k) = —i [t™] e %"k £ (2) e =1 = —am [ 38 8 vip (8
0

Properties of |f'(2)]?



Fluid perturbations from expanding scalar bubbles
v (k) = —i [t™] e %"k £ (2) e =1 = —am [ 38 8 vip (8
0

Properties of |f'(2)]?

Large scales k = z/t(™ — 0

ro a5 [ o] - 1D = If)? 23
t 3 Jg, " 0

Related to causality

Compact support of v;,,($)



Fluid perturbations from expanding scalar bubbles
v (k) = =i [t™] ek £ (2) e =1 = —am [ 38 8 vip (8
0
Properties of |f'(2)]?

Smallscales k = z/t™ — oo
f’(Z) - Z_Z{_Ll’n[ﬁtsh SinZStsh Avip(fsh) T fw Sinsz AUip (Qtw)]}

From the discontinuities of v;, (&) > |f’(Z)|2 — |fog|2 z 4

e N Dleny” = |fhwl? 272

fe,nv - 4ﬂ[€shvs_h + €W|Avip(€w)|]




Fluid perturbations from expanding scalar bubbles

_ n 3 i ,X(n)A ,
Properties of | f'(2)|? vV (g, k) = —i [tW] ek f7(2)
F@) = —an [ 5,69 € vip(®) d
z=0 70013
- ) P — fenv
CroSs fOI

10716 +rrr
10°




Fluid perturbations from expanding scalar bubbles

Properties of | f'(2)|? vV (t k) = —i [t(“)]geik'xgn)i(f'(z)
)= —am | 50 € i D)
a=0.1 ; 11/3
1071 - Zeross = f;n’v
0
”ﬁ "i—; 107° Significant deviations from ~ z# begin around
= |N
31 -
n~— (6 +6)

10716 +———
0 (for generic a & &)




Fluid perturbations from expanding scalar bubbles

: n)13 Likx{M7, o7
Properties of | f'(2)|? vV (g, k) = —i [tW] ek f7(2)

F@) = —an [ 5,69 € vip(®) d
0

£,=0.2
a=0.1 3
L w -1
. Z1~7(5f+5b)
—|> 10°
Nl 6
=[N 6
/ 2 N2 .2 4 " “
10~ |f (Z)lenv ~ |f0| z% |11+ Z_
1

(Sw=S vey(@)/2)

10716




|f!(z)|2

(zfy

a=0.1

=~ 107" A

Fluid perturbations from expanding scalar bubbles
Properties of | f'(2)|?

1071 -

10—1 -

£, =0.6

10716 4+

10°

10*

10°

10?

The ~ z~* begins around

r(ff o fb)_l Gw< ¢s)
1 &) ceiew
L (ff o Eb)_l Ew> ve))




|f!(z)|2

(zfy

Properties of | f'(2)|?

Fluid perturbations from expanding scalar bubbles

@ =01 2 = _(gf T gb)_l

™~
—
-

2
Ew=06

The ~ z~* begins around

( —
(gf — gb) ' (Sw< ¢s)
Zp =T X { (gf R €W)_1 (cs <Sw<vc))

-1
\ (é—f o gb) (Ew> ve))

10—1 -

10-6 -

1071 -

10716 4+

$¢— &p X AR, (sound shell thickness)
100

10* 10° 10?



|f!(z)|2

(zfy

Fluid perturbations from expanding scalar bubbles
Properties of | f'(2)|?

a =01 21 = 7(€f T gb)_l

£, =0.6

- numerical
Zcross

The ~ z~* begins around
107"

( —
(ff — &) 1 (w< )
Z; =T X { (Ef o EW)_1 (¢s < $w<vc))

-1
\ (é—f o gb) (Ew> ve))

: Z3

=~ 107" A

1071 -

10716 4=

$¢— &p X AR, (sound shell thickness)
100

—~—rr ~ . — _ distance between
10 10 10 ff Sw = Ssn— Sw ) N
= discontinuities

(for hybrids)



Fluid perturbations from expanding scalar bubbles
Properties of | f'(2)|? 31

_ ( _
_ o~ — (G +8) (& &) weo

Z, ®m X4 (& — fw)_1<cs<fw<vq>

\ (gf — fb)_l (§w> vey)

10—1 -

o F )l =
x 10 4. 22 g .
S "2 .2 i) 1]“1[ (Z) 2] az
fOl Z [1 + (Zl 1 + VA
10711 -
Cw= vep(a)/2)
10-1° - _oli log(z;/Zcross )l
r log(z,/2,)



Fluid perturbations from expanding scalar bubbles

/ 2 37-[ —1 ( -1
Scales of |f'(2)| 2~ (Stf + &) (&7 —&)  @ew
-1
- . o= X (5 - 60) Mo
—_ 2z,a=10"! ,: —1
o (& =8)" o
o f’(Z)lgnv ~
102 5 ’ y—2 —y—4
1222 [1+ ()] [1+(2) 7]
£I2 2 [1+(Zl) 1+ (2
107 -
Cw= vey(a)/2)
: : . 0.6 0.8 1.0 log(z5/Zcross)
" - - & =2 log(ze/) ‘

a1=a2=4



Scales of |f'(2)|?

1 —— # (using AR)
1o2~E

10! 1

10° 1

Fluid perturbations from expanding scalar bubbles

r(ff — fb)_l GRS

Z2
Z

| — Z(LcwG)

1 [2403.03723]

Zy =T X 4 (gf — {W)_1<cs<fw<vq>

Ve(a) X (ff — fb)_l Cw> vcy)

. Much broader spectrum for hybrids than using

Zy =T X (Ef—fb)_l o AR T

— -1 i
Z, =T X |Cs — éwl (Lisa Qosmology
Working Group)

0.0 0.2

0.4 0.6 0.8 1.0

Ew



Fluid perturbations from expanding scalar bubbles

(&= &) weon

Z, ®m X4 (& — fw)_1<cs<fw<vq>

31
Scales of |f'(2)|* 7, ~ —
» Toy models 2
0.08
— £,=02

0.07 A

0.06 -

0.05 -

Vip(&)

0.04 -

0.03 A

0.02 -

0.01 A

(& —8)" o

Approximate the deflagrations with a
linearly decreasing velocity profile

§r—¢
gjf_ : (&< & < &)

v(f) = Vconst

Vconst €an be chosen in order to reproduce either the
small scales (v,) orthe large scales (v;,) limit of |f'(2)|?

0.00 . t
0.1 0.7 0.8

0.9



Fluid perturbations from expanding scalar bubbles

Scales of |f'(2)|?

» Toy models

0.64

0.66

% _
(55— &) @<
Z, ®m X4 (& — fw)_1<cs<fw<vq>

(& —8)" o

Approximate the hybrids with a constant
velocity profile only between discontinuities

U(E) = Vconst (Cw< ¢ <<f)

Vconst Can be chosen in order to reproduce either the small

scales (v,y,) orthe large scales (vfé) limit of |f/(2)|?



Fluid perturbations from expanding scalar bubbles

Scales of |f'(2)|*

0.25 -
0.20 -
W 0.15 -
0.10 4

0.05 ~

0.00

0.55

» Toy models

— €W =0.8

Vr

0.70

% _
(55— &) @<
Z, ®m X4 (& — fw)_1<cs<fw<vq>

(& —8)" o

Approximate the detonations with a
linearly increasing velocity profile

$ —Sb
S$f = Sb

v(f) = VUconst

(Sp<$ < <)

Vconst €an be chosen in order to reproduce either the
small scales (v_) or the large scales (vf) limit of |f/(2)|?



Fluid perturbations from expanding scalar bubbles

Ew=0.2
L Numerical vs Fits vs Toy models
E,=0.6
<. 10” I
S : Zcross : toy mo.del |
~ I numerical
10-11 10 1 o : : “ -=-= fit
--- toy model I 1
_— Eui]erical i : :
—-——- fit i | 1
10-16 m— N — ) ——— L | " |
10° 10* 102 10% | .
z V|~ 107 : (M
EW =0.8 i::]’ "'I-E: : | v
- RO T o toy model G | N 1 \
1 : —— numerical 7 — ] S : 1
10 E -—=- fit Z]_ : -; E ! )
: -11 ] Sy
| 10 i g } N
107° | :.. Hi T
: : e . "R '
: | I'
1 : | J |
107! : 10—16 —_— v ,l,,,,,, . S — . A A: B
i 10° 10! 10° 10°
1
10—16 — . :, _— T L . r . | Lo Z
10° 10! 102 10°



Evolution of the fluid perturbations: before collisions

. . . . . 3 . (n) A
Com.putlng the .klnetlc spectrum.ln the.bul:?ble expansion phase v (t,K) = —i [t(n)] olk Xy f'(Z)
requires averaging over stochastic realizations

(vi(t, k)v; (6, k) my o f(z) = —4m fo j2(28) €2 vip (B) d
0O %0



Evolution of the fluid perturbations: before collisions

. . . . . 3 . (n) A
Com.putlng the .klnetlc spectrum.ln the.bul:?ble expansion phase v (t,K) = —i [t(n)] olk Xy f'(Z)
requires averaging over stochastic realizations

<Ul' (t, k)U]ik (t, k,)>x(n) t(n) f'(z) = —4m fo j1(z8) & vip(§) d§
O "0

(v (6, 1)v; (6, K)oy = K K 8 (ke = k) iy (D (¢ = £0)°1 ' (2)?

|

Average over nucleation locations (homogeneously distributed)



Evolution of the fluid perturbations: before collisions

. . . . . 3 . (n) A
Com.putlng the .klnetlc spectrum.ln the.bul:?ble expansion phase v (t,K) = —i [t(n)] olk Xy f'(Z)
requires averaging over stochastic realizations

<Ul' (t, k)U]ik (t, k,)>x(n) t(n) f'(z) = —4m fo j1(z8) & vip(§) d§
O "0

(vi (¢, )] (¢, k')) L = =k ki 6 (k- Kk) n,(t) %

/ f dt, r<to> (t — to)® If’ <z>\|2

Average over nucleation times nucleatlon rate z=k(t—to)



Evolution of the fluid perturbations: before collisions

t
(vi (¢, )V} (¢, k’))xgn) ) = kiki 6®(k— k') ny(t) f dt, [(t,) (t —to)® | (2)|?
, ‘.

F(to) — p(to) h(to) +<— volume fraction in the symmetric phase

I h(t) = exp [_4?”} dto p(to) & (t — t0)3]
te

nucleation probability per unit volume

p(t) ~ e™5®



Evolution of the fluid perturbations: before collisions

t
(vi (¢, )V} (¢, k’))xgn) ) = kiki 6®(k— k') ny(t) f dt, [(t,) (t —to)® | (2)|?
, ‘.

F(to) — p(to) h(to) <+<— volume fraction in the symmetric phase

I h(t) = exp [_4?”} dto p(to) & (t — t0)3]
te

nucleation probability per unit volume

p(t) ~ e™5®

Exponential nucleation S(t) = S(t,) — (t —t,) » p(t) = p, et

BZ
Gaussian nucleation  S(t) = S(t,) + %ﬁz(t —t.)?% = p(t) = p*e—7(t—t*)2



Evolution of the fluid perturbations: across collisions

nl}z(f) dEy T(E) (E— E)° If' (D))
L |

Bt, k=k/p F,(F < T, k)

(Vi(t, k)vf (t, k’))){gn),t(()n) = Ei Ej 5(3)(" — k')

t

- Need to average over nucleation and collision times

-We can introduce a normalized lifetime distribution v(T)



Evolution of the fluid perturbations: across collisions

n?;(f) dEy T(E) (E— E)° If' (D))
L |

Bt, k=k/p F,(F < T, k)

(Vi(t, k)vf (t, k’)>xgn),t(()n) = Ei Ej 5(3)(" — k')

t

- Need to average over nucleation and collision times

-We can introduce a normalized lifetime distribution v(T)

F, (84, k) = nb(t) " af v(T)TS| ' (kT)|

0

Probability for a bubble to nucleate

Hindmarsh & Hijazi [1909.10040] —— V(T) = j dt P(t) T3 (t + ) at t and disappear at t + T

B ny



Evolution of the fluid perturbations: across collisions

A AN

(Ul’(t, k)U; (t, k,)>x(n) t(n) — ki k] 5(3) (k — k,) FL (t, k)
0 "0 - Hindmarsh & Hijazi [1909.10040]

~ o~ = nb(f)t~ N 2 NG | ot A2
Fi(E <o k)= e ). di, T(Ey) (E—E)° |f (kD] l
tc
F (E,, k) = bggw) dT"1/(7:)7"6‘]“(l§7~")|2 v(T)=—ﬁ—;b Loodfp(f)%(f+7")
; :



Evolution of the fluid perturbations: across collisions

A AN

(Ul’(t, k)U; (t, k,)>x(n) t(n) — ki k] 5(3) (k — k,) FL (t, k)
0 "0 - Hindmarsh & Hijazi [1909.10040]

~ o~ = nb(f)t~ N 2 NG | ot A2
Fi(E < Esw k) = g | 4t T(Eo) (E = o) |/ (kT)| |
tC
F (E,, k) = bggw) dT"1/(7:)7"6‘]“(l§7~")|2 v(T)=—ﬁ—;bLoodEp(E)%(f+T)
; c
R
J, D) = =g

Forany p(t)!



Evolution of the fluid perturbations: across collisions

A AN

(Ul’(t, k)U; (t, k,)>x(n) t(n) — ki k] 5(3) (k — k,) FL (t, k)
0 "0 - Hindmarsh & Hijazi [1909.10040]

~ o~ = nb(f)t~ N 2 NG | ot A2
Fi(E < Esw k) = g | 4k T(Eo) (@ = o) |/ (kT)| |
tc
F (E,, k) = bl(gtgw) dTv(T)T6‘f’(ET)|2 V(T)=—ﬁ—;bj:odfp(f)%(f+7")
; :

|

f()fzv?p(f)df jiﬁf%(f):- 3

0 4y np (fsw)

2

* k - 41T
2 (i =f dk — F, (2, , k) =
vrms( SW . 27‘[2 L( Sw ) ,B3Vb

l |
ATt <gw>3 vz . of a single velocity profile Forany p(t)!




Evolution of the fluid perturbations: across collisions

A AN

(Ul’ (t, k)U; (t, k,)>xgn)’ t(()n) — ki k] 5(3) (k — k,) FL (t, k)

-« ny(®) [t ~ =12 g :4_;<€_W>3
Fo(f < Egp k) = ) dt, T(E,) (= )¢ |f' (kD) g
tc
p 00 v, ¢ of a single velocity profile
F (£ F) = ”bggw) AT v(T)To|f (kT , \
0

T fo £202 (£)de

vﬁms (E.;‘I_W) — F; 3 v,

o Esw
vﬁms(zs_w) — 47-[[ gzvlzp(f)df-]: dEO F(EO) (ES_W o EO)S — vﬁms(zs-l_w
0 t

c

Conservation of v2,,.
across collisions?



Evolution of the fluid perturbations: across collisions

- 4t (% i ;
Vs (Edw) = WL fzvizp(f)df v, =4?<%W>

o fs_w
b2, (E5,) = 4n j £202, () de f dEy T(Ey) (Exy — £9)? = v2e(Ey
0 t

c



Evolution of the fluid perturbations: across collisions

A (&,

Vrms (Esw) =% jo Oofzvizp(f)df ot <ﬁ>

o0 Esw
s Ba) = 4 | £20)dE [ dEo TEo) (B — E0)? = vimalE
0 £e

The lifetime distribution average implies conservation of v2, ¢ across collisions (as the value after
collisions is the same as in the single velocity profile). We can also in general define an effective initial

time of the sound wave phase tg, atwhich v2, . reaches the single-profile value as



Evolution of the fluid perturbations: across collisions

A (&,

Vrms (Esw) =% jo Oofzvizp(f)df ot <5>

o0 Esw
s Ba) = 4 | £20)dE [ dEo TEo) (B — E0)? = vimalE
0 £e

The lifetime distribution average implies conservation of v2, ¢ across collisions (as the value after
collisions is the same as in the single velocity profile). We can also in general define an effective initial

time of the sound wave phase tg, atwhich v2, . reaches the single-profile value as

AmE3 (tsw 3 Vims(Esw)
8 [ty 1) By~ F) =1 s )
EC vaS Sw




Evolution of the fluid perturbations: across collisions

3 ,t A :
41sy, Swd~ COE) (F P Y3 =1 Effective initial time of the
tO (to) (tsw o tO) —
3 Ji sound wave phase
10°
. 104 Numerically we see that in the limit £, — £, > 1
+ 7
‘”—"E 104 - (tsw_tc)/(t*_tc) -1
;lhl
e
= 100+
W E
=, - -
107+ J_,.f’ —— EXP, In(h,) = —1
---= GAUSS, In(h,) = —10-°
1044

0 25 50 75 100 125 150
-E_ -E*



Evolution of the fluid perturbations: across collisions

Properties of the kinetic spectrum at the time of collisions

Fy (o, k) = n”(t w) f AT v(T)TS|f (kT)|’

Large scalesk - 0 F, - kzFL(O)

Smallscalesk - o F; - k—4FL(env)

£\ & F'“" can be computed from |f3 |2, | fino |2 p(£)



Evolution of the fluid perturbations: across collisions

Properties of the kinetic spectrum at the time of collisions penv)\ /6
~ k _ L
1. nb (tSW) - ~ ~N\ A~ ~~ 12 CTross ( F(O) >
T . 6 / L
Fi(Esw k) 76 dTv(T)T®|f' (kD)
0 (exponential nucleation) &, = 0.2
) (0) e\ crgee
Largescalesk - 0  F, — k“F, 1071 - ~
Smallscalesk » 0 F, —» k™*F"™ i
= S 107°- i -+ toy model
et r\":" : —— numerical
F' & F'“" can be computed from |f3 |2, | fins |2, p(£) & I i --- it

~
o

l[l_ll .

E ~ Zl exponential E ~ Z1 simultaneous
1 1

_ 5.7 nucleation o 25 nucleation

10716 T
107!

[ . D —

¢ 10! 10°

= ]

A



Evolution of the fluid perturbations: across collisions

Properties of the kinetic spectrum at the time of collisions

0
~ Z ~ Z
k. ~ _1 exponential k1 ~ _1
1 5.7  nucleation 25

FL ~ FL(O) kZ

CwS vey/2)

-1+ AN
K1

dT v(T)T|f (k)|

. - FL(env) 1/6
Cross FL(O)

simultaneous

| o
TN 'k’cross

(exponential nucleation) &, = 0.2

. -1
nucleation 10

l[l_ll .

= toy model
— numerical
-—- fit

Faout]
o

lﬂ—lﬁ

107!

[ . D —

¢ 10! 10°

= ]

A



Evolution of the fluid perturbations: across collisions

Properties of the kinetic spectrum at the time of collisions penv)\ /6
¥ 0.0) k = L
N nb (tSW) N o s 2 Cross ( F(O) )
¥ — 6| £/ L
FL(tsw’ k) - 186 dTV(T)T ‘f (kT)‘
0 (exponential nucleation) £, = 0.7
I,E - Zl l“‘(’ —~ Zl 'QCI'OSS
— = 1 — 1 T

1 57 exponential 25 simultaneous 10 T
- 7 nucleation _ 7 nucleation s
P~ 22 P~ 22

2 — 2 — — BN

2-4‘ 1-3 IE S 107° 1 M\‘ﬁ.
— | L ~
uw N
) —0—4 )
b b_ b b 1:]-11_
0 k\“1] b1 k\ "2 2
F, ~ FOk? [1 +(5) ] [1 +(5) ] oy model
kl kZ numerical
——- fit
1074 -1 I Illlllllu I I”“”|1 - Illllllz
(fwz UC]/Z) 10 10 _10 10
log(kz/kcross)] k

=2[1-
’ { log(k, /ky) b, =2,b, = 4



Consequences for the gravitational wave spectrum

min[to,T fin] dT1 dT

Qew (To, k) = 3 Tgw ff T, cos k(7o — 71) cos k(ty — 75) EI'H(k’ T1,T2)

UETC for sound-waves with full F; (t, k)
Hindmarsh & Hijazi [1909.10040]



Consequences for the gravitational wave spectrum

min|7o,T fin] dT1 de

a = 0']“} é-'w — 06, 5Tﬁn/R* — 10

T1 T

_9| — RH.=1
1072 R.H,=0.1
10_4 — R,H, = 0.01
—_ 10—6_— R.H.=0.001
= 1078
(@) 10—10
1012
10—
1016 | | |
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In the limit of long duration of the sound-waves a good
approximation for the spectral peakis given by
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Conclusions

- The GW spectrum from sound waves (in the sound shell model) can be understood from
the properties of the self-similar profiles and of the bubble nucleation history

- For hybrids the GW peak scale is related to the distance between discontinuities instead of
the sound-shell thickness (broader spectrum around the peak)

- An accurate characterization of the full GW spectrum in terms of phase transition
parameters is necessary for parameter reconstruction at future experiments (e. g. LISA)



Conclusions

- The GW spectrum from sound waves (in the sound shell model) can be understood from
the properties of the self-similar profiles and of the bubble nucleation history

- For hybrids the GW peak scale is related to the distance between discontinuities instead of
the sound-shell thickness (broader spectrum around the peak)

- An accurate characterization of the full GW spectrum in terms of phase transition
parameters is necessary for parameter reconstruction at future experiments (e. g. LISA)

Thanks for your attention!
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