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List of abbreviations

FH - Fundamental Harmonic, 1550 nm
SH - Second Harmonic, 775 nm

SHG - Second Harmonic Generation, 775 nm
ppLN - periodically poled Lithium Niobate

QPM - quasi-phase matching
BHD - Balanced Homodyne Detection

LO - Local oscillator, 1550 nm
BS - Beamsplitter

1 Introduction

The mathematical foundations behind the Second Harmomic Generation (SHG) process is discussed
in section 2, the generated squeezing is considered in section 3, and the detection in section 4. There
are several text books, a popular one available in the library and also online through KTH accounts is
[1].

2 Second Harmonic Generation

The focus throughout this lab work is on the processes based on the χ2 susceptibility. Both SHG and
OPA rely on three-wave mixing processes where the three waves that interact are the pump, signal
and idler photons. Due to conservation of momentum

niωi

c0
+

nsωs

c0
=

npωp

c0
(1)

must be satisfied, where, nx is the refractive index of the nonlinear medium experienced for the three
different modes of light, which are generally represented as idler, signal, and pump and c0 is the speed
of light in vacuum. The energy must also be conserved throughout the nonlinear conversion process.
Recalling the energy of a photon being h̄ω, in other words,

ωp = ωs + ωi (2)

has to be satisfied.
In case of the second harmonic generation (SHG) two photons at frequency ω are absorbed by

the nonlinear material to re-radiate a single photon at frequency 2ω. This χ2 interaction is called
up-conversion. In the case of SHG the energy conservation, equation 2, is satisfied as ω + ω = (2ω).
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In nonlinear optics the conservation of momentum is often referred to as phase matching, and in the
case of SHG perfect phase matching must satisfy

kω + kω = k2ω ⇐⇒
nωω

c0
+

nωω

c0
=

n2ω(2ω)

c0

(3)

When utilizing quasi-phase matching (QPM), in which the structure of the crystal is periodically poled,
the difference between the wavevectors are:

∆k = 2kω − k2ω + km (4)

where km comes from QPM. For perfect QPM the wavenumber mismatch becomes zero (∆k = 0).
Denoting the electric field of 775 nm light as B and the electric field of 1550 nm light as A the coupled
mode equations are expressed as:

dA

dz
= i

√
αSHG

L
B(z)A(z)∗ei∆kz

dB

dz
= i

√
αSHG

L
A(z)2e−i∆kz

(5)

where αSHG is the second harmonic generation (SHG) conversion efficiency in units ofW−1 and L is
the length of the waveguide. The equations are often stated using a normalized conversion efficiency in
units of W−1m−2, with the normalized conversion efficiency being αSHG,norm = αSHG

L2 . We choose to
use αSHG in units of W−1 in order to make other equations simpler and since αSHG is the measurable
quantity that is stated on any SHG waveguide. You can read more about how the equations are derived
in [2].

If we assume perfect QPM, we can rewrite equation 5 and solve them as follow:

dA

dz
= i

√
αSHG

L
B(z)A(z)∗

dB

dz
= i

√
αSHG

L
A(z)2

d2B

dz2
= 2i

√
αSHG

L

dA

dz
A = 2i2

αSHG

L2
B|A|2 = −2

√
αSHG

L

d|B|
dz

B

(6)

With no input SH (|B(0)| = 0), and with constant input light (|A(0)| = const.), we can calculate
the power of the SHG light by solving equation 6 we get

|B(z)| = |A(0)|tanh(
√
αSHG|A(0)| z

L
) (7)

The power at the output of the waveguide is then:

PSHG = Pintanh
2(
√

αSHGPin) (8)

where Pin = |A|2 is the input 1550 nm light and PSHG = |B|2 is the generated SHG light.
If we don’t assume perfect QPM (∆k ̸= 0), as in equation 8, but still assume no input SH (|B(0)| =

0), as well as no pump depletion (A(z) = const.), the solution to equation 5 is instead:

PSHG ∝ Pinsinc
2(
∆kL

2π
) (9)

Note: ∆kL depends on the temperature, since temperature changes both the length and the
refractive index of the waveguide.
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3 Squeezing

To consider squeezing we return to the equations for a waveguide with FH and SH frequencies. However,
we now rewrite the fields as quantum operators. This results in:

dÂ(z)

dz
= i

√
αOPA

L
B̂(z)Â(z)†

dB̂(z)

dz
= i

√
αOPA

L
Â(z)2

(10)

We now use a linearisation of operators to rewrite Â(z) = Ā(z)+â(z) and B̂(z) = B̄(z)+ b̂(z) where
Ā indicates the average and â(z) a small deviation, in other words we have separated each field into
its steady state component and fluctuating component where the fluctuating component is quantum
mechanical in origin. Taking only the parts with no deviations we get:

dĀ(z)

dz
= i

√
αOPA

L
B̄(z)Ā(z)∗

dB̄(z)

dz
= i

√
αOPA

L
Ā(z)2

(11)

Here αOPA is now the squeezing efficiency. Although this is the same the SHG efficiency (αSHG), we
choose to differentiate between the two quantities as experimentally the SHG and the OPA waveguide
tend to have different conversion efficiencies. However, αOPA is still typically measured by considering
the SHG conversion efficiency as the latter can be measured easier experimentally.

If we consider the deviations to first order we have:

dâ(z)

dz
= i

√
αOPA

L
(b̂(z)Ā(z)∗ + B̄(z)â(z)†)

db̂(z)

dz
= i

√
αOPA

L
2â(z)Ā(z)

(12)

We observe that first we generate the SH and then we squeeze the light in a separate waveguide.
Hence B̄ is approximated to be constant in the OPA. We also assume that we filter out the FH such
that we only squeeze vacuum, this implies Ā = 0. Using these assumptions equation 12 becomes:

dâ(z)

dz
= i

√
αOPA

L
B̄(z)â(z)† (13)

Defining the amplitude, X̂, and phase, Ŷ , quadrature as (sometimes these are defined as X̂1 and
X̂2):

X̂ = â+ â† (14)

Ŷ = i(â− â†) (15)

Equation 13 together with 14 gives:

dX̂

dz
=

dâ

dz
+

dâ†

dz
= i

√
αOPA

L
(B̄(z)â(z)† − B̄(z)∗â(z)) (16)

In order to get anti-squeezing in the X quadrature and squeezing in the Y quadrature, the phase
of B̄ is set to −π

2 :
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dX̂

dz
=

√
αOPA

L
|B̄|(â+ â†) =

√
αOPA

L
|B̄|X̂ (17)

Similarly we get for the phase quadrature:

dŶ

dz
= −

√
αOPA

L
|B̄|Ŷ (18)

Under the assumption that |B̄| is constant in the squeezer we get the solutions:

X(z) = X(0)exp(
√
αOPA|B̄| z

L
) (19)

Y (z) = Y (0)exp(−
√
αOPA|B̄| z

L
) (20)

Note : Variance for an operator Ô can be calculated by ⟨(∆Ô)2⟩ = ⟨Ô2⟩ − ⟨Ô⟩2

⟨(∆X(z))2⟩ = ⟨X(z)2⟩ − ⟨X(z)⟩2

= ⟨
(
X(0) e

√
αOPA|B̄|z/L

)2

⟩ −
(
⟨X(0) e

√
αOPA|B̄|z/L⟩

)2

= e2
√
αOPA|B̄|z/L (

⟨X(0)2⟩ − ⟨X(0)⟩2
)

= e2
√
αOPA|B̄|z/L ⟨(∆X(0))2⟩

The Y-quadrature can be calculated similarly :

⟨(∆Y (z))2⟩ = ⟨Y (z)2⟩ − ⟨Y (z)⟩2

= ⟨
(
Y (0) e−

√
αOPA|B̄|z/L

)2

⟩ −
(
⟨Y (0) e−

√
αOPA|B̄|z/L⟩

)2

= e−2
√
αOPA|B̄|z/L (

⟨Y (0)2⟩ − ⟨Y (0)⟩2
)

= e−2
√
αOPA|B̄|z/L ⟨(∆Y (0))2⟩

In order to simplify the equations we write V (X) = ⟨(∆X(z))2⟩, V (X(0)) = ⟨(∆X(0))2⟩; V (X) =
⟨(∆X(z))2⟩, V (X(0)) = ⟨(∆X(0))2⟩. This now simplifies the variance equations listed above to the
following :

V (X) = V (X(0))e2
√
αOPA|B̄|z/L (21)

V (Y ) = V (Y (0))e−2
√
αOPA|B̄|z/L (22)

The squeezing and anti-squeezing levels at the output after the waveguide becomes:

V (X)/V (X(0)) = exp(2
√

αOPAPSHG) (23)

V (Y )/V (Y (0)) = exp(−2
√
αOPAPSHG) (24)

Where we have used PSHG = |B|2 and normalized to vacuum noise V (X(0)) and V (Y (0)).
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4 Balanced Homodyne Detection

We detect the squeezing of light through the use of Balanced Homodyne Detection (BHD). Homodyne
detection is used since the power of the variance signal is too low to detected directly. The process
consists of interfering the variance signal with a strong local oscillator (LO) field which enhances the
signal to be measured. For a schematic of this setup, refer to the notes from the introductory lecture
to the lab.

BHD is phase-sensitive and it consists of the signal and LO interfering on a beamsplitter (BS) with
a phase difference θ and measuring the photocurrent difference. If the BS is 50/50 and the variance
signal consists of squeezed vacuum the photocurrent difference will be:

i− ≈ β̄(Xcosθ + Y sinθ) (25)

Where β̄ is the expectation value of the LO field.
The variance of the photocurrent i− is given by :

V = ⟨(∆i−)
2⟩ = ⟨i2−⟩ − ⟨i−⟩2 (26)

For vacuum noise: ⟨X⟩ = ⟨Y ⟩ = 0 =⇒ ⟨i−⟩ = 0
Now the variance simplifies to : V = ⟨i2−⟩

Substituting for i− from 25 we get the variance to be

V = ⟨
[
β̄ (X cos θ + Y sin θ)

]2⟩ (27)

which can now be simplified to be

V = β̄2⟨(X cos θ + Y sin θ)
2⟩ (28)

Expanding only the terms inside the expectation values :

(X cos θ + Y sin θ)
2
= (X)2 cos2 θ + (Y )2 sin2 θ + (XY + Y X) cos θ sin θ (29)

V = β̄2
[
⟨(X)2⟩ cos2 θ + ⟨(Y )2⟩ sin2 θ + ⟨XY + Y X⟩ cos θ sin θ

]
(30)

since ⟨XY + Y X⟩ = ⟨2i(a2 − a†
2⟩ = 0 for vacuum, this gives:

V = β̄2
[
⟨(X)2⟩ cos2 θ + ⟨(Y )2⟩ sin2 θ

]
(31)

We can now re-define our X and Y quadratures respectively as :

V+ = ⟨(∆X)2⟩ = ⟨(X)2⟩
V− = ⟨(∆Y )2⟩ = ⟨(Y )2⟩

(32)

Now, we can use equation 32 in 31 to obtain a familiar looking equation

V = V+cos
2θ + V−sin

2θ (33)

Thus by varying the phase of the LO (θ) we can observe the variance in either the X or Y quadrature.
This also means that if we have phase noise (small deviations in θ from the optimal value) the measured
squeezing will be lower since the anti-squeezing quadrature is larger. The above equations are for the
lossless case.
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5 Incorporation of losses

Optical loss is detrimental to squeezed states. Some examples are incoupling (ηin) to the OPA,
outcoupling from the OPA (ηout), propagation efficiency in the squeezer (ηprop), and readout efficiency
(ηPD) in the homodyne detector.

Vout = ηiVin + 1− ηi (34)

Where ηi is the efficiency that is under consideration. If we want to consider multiple losses at the
same time, the term ηi can be modified to include all of them as ηi = ηPDηpropηout.

Note that the incoupling efficiency (ηin) will not reduce squeezing in the same way, since it occurs
before the squeezed light is generated. However, it will reduce the input SHG power by PSHG →
ηinPSHG, which will reduce the total squeezing as well.
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