Ultra-High Energy Part

Click to edit Master subtitle style

sino Falci

nternational Project Scie University, Nijm TRON, Dwingeloo

1/19/09

WARNING

Click to edit Master s

About 1 Million energetic particles will hit each of you during this talk (there is a non-zero chance to mutate into a dinosaur)

What we (don't) know about UHECRs

We know: their energies (up to 1020 eV). I their overall energy spectrum We don't know: where they are produced how they are

produced

CERN Large Hadron Collider 7×1012 eV beams R=4.3 km

Solar System Large Hadron Collider 1020 eV beam R=60 Million km

Sun • • Mercury Moon

Potential Sources

- ⁿ Hillas plot: Gyro radius has to fit source size! $R_{gyr} = \frac{E_{CR}}{c^{R}}$
- Galactic < 1017eV</p>
 - Supernovae
 - I neutron stars & stellar black holes
- Extragalactic >1018 eV
 - Supermassive black holes
 - Gamma-Ray bursts

- Intergalactic shocks
- Top-down: decay of primordial

Radio Images of Cosmic Accelerators

Cas A

Cygnus A

NRAO/AUI

Fornax A

1.4 , 5, & 8.4 GHz

The Pierre Auger

Tanks aligned seen from Los Leones

Auger: UHECR

- Reliable energy spectrum up to >1020 eV from surface detectors (SD)
- Evidence for a suppresion above 1019.6 eV
- Interaction of UHECRs with cosmic microwave background ("GZK cutoff")?

→ UHECRs are extragalactic 30 expected for E-2.6, 2 seen

Auger: Clustering of

New data confirms correlation with AGN clustering. Chance probability: $2 \times 10-3$

The beginning of "charged particle astronomy"!

AUGER Collaboration (2007), Science

Early CR Radio Experiments

The 76-m Lovell Telescope at Jodrell Bank

- Blackett & Lovell (1940): Propose radar reflection of CRs (and L. builds big dish).

Astroparticle Physics: Radio Detection of

- Cosmic Rays in atmosphere:
 - Geosynchrotron emission (10-100 MHz)
 - Radio fluorescence and Bremsstrahlung (~GHz)
 - Radar reflection signals (any?)
 - VLF emission, process unclear (<1 MHz)
- Neutrinos and cosmic rays in solids: Cherenkov emission (100 MHz - 2 GHz)
 - polar ice cap (balloon or satellite)
 - inclined neutrinos through earth crust (radio arrav)

LOFAR Cosmic Ray KSP: Main Motivation

- Exploring the sub-second transient radio sky:
 - Extensive Air showers as guaranteed signal
 - Radio flashes from the moon (UHECR and other?)
 - Identify and understand other sporadic signals ("RFI", lightning, SETI, astrophysical sub-ms pulses, e.g. giant pulses)
- Develop the techniques to work on

Coherent Geosynchrotron Radio Pulses in Earth

UHECRs produce particle showers in atmosphere

- Shower front is
 ~2-3 m thick ~
 wavelength at
 - 100 MHz
- e± emit synchrotron in

Falcke & Gorham (2003), Huege & Falcke (2004,2005) Tim Huege, PhD Thesis 2005 (

Monte Carlo

F. Hurgen REAS2 madio icode ~ ~

- Monte Carlo simulation
 - Calculate electric field from a single particle at different positions on the ground
 - Add pulses from many electrons and positrons
- Separation of particle radiation codes
 - Intermediate step saves time

Corsika histograms

S. Lafebre: LOFAR air shower library on BlueGene Supercomputer

- Corsika simulations with 50 slices at equidistant shower depths
- Record e+/echaracteristics:
- Energy
- Lateral distance
- Arrival time
- Momentum angles

LOPES: LOFAR Prototype Station

Imaging of CR radio pulses with LOPES

A. Nigl 2007, PhD

Horneffer, LOPES30 event

See also Falcke et al. (LOPES collaboration) 2005, Nature, 435, 313

Cross Calibration of

UHECR Particle Energy

B-field

Distance

$$\varepsilon_{est, E_{p}} = (12 \pm 1.8) \left[\frac{\mu V}{m \, MHz} \right] (1 + (0.1 \pm 0.03) - \cos(\alpha)) \cos(\theta) \\ \times \exp\left(\frac{-R_{SA}}{(200 \pm 45)m} \right) \left(\frac{E_{p}}{10^{17} \, eV} \right)^{(0.91 \pm 0.07)}$$

Horneffer-Formula 2008

Phased Array Beam Steering

- LOFAR lowband element receives radiation from all directions.
- Phased Arrays have a virtual steerable "focal surface" which can be

Phased Array Beam Steering

- Curving the virtual "focal surface" allows near-field imaging.
- Offline processing allows one to scan an entire volume at all frequencies and time ranges.
- Search for fast and unpredictable bursts.

Nanosecond Radio Imaging in 3D

Actual 3D radio mapping of a CR burst No simulation!

- Off-line
 correlation of
 radio waves
 captured in
 buffer memory
- We can map out a 5D image cube:
 - I 3D: space
 - 2D: frequency &

Bähren, Horneffer, Falcke et al. (RU Nijmegen)

Thunderstorm Events

- Does the Electric field of the atmosphere influence CR radio signal?
- For E>100 V/cm Efield force dominates B-field:
 - Fair weather: E=1 V/cm
 - Thunderstorms: E=1 kV/cm
- Select thunderstorm periods from meteorological data:
 - ⇒ Clear radio excess during thunder storms

Buitink et al. (LOPES coll.) 2007, A&A

Thunderstorm Events

ADD PES * BRANDING

- CORSIKA simulations with thunderstorm electric fields
- Electrons and positrons are accelerated and deflected ("Electron rain")
- This can lead to increased radio emission
- The shower is modified in thunderstorms not the radio emission

CORSIKA air shower simulation with thunderstorm electric fields

 \bigcirc

Positron "Rain"

Buitink et al. (LOPES coll.) 2007, (ICRC)

Thunderstorm Events

- CORSIKA simulations with thunderstorm electric fields
- Electrons and positrons are accelerated and deflected ("Electron rain")
- This can lead to increased radio emission
- The shower is modified in thunderstorms not the radio emission

CORSIKA air shower simulation with thunderstorm electric fields

Buitink et al. (LOPES coll.) 2009, (PhD)

Ultra-High Energy (Super-G7K) Neutrino Detections

- Ultra-high energy particle showers hitting the moon produce radio Cherenkov emission in the regolith.
- The moon

radio from neutrinos hitting the moon

Radio Emission from Showers in Dense Media: Radio Cherenkov has been observed!

 \cdot Use 3.6 tons of sand · Repeated with ice for ANITA experiment

From Saltzberg, Gorham, Walz et al PRL 2001

UHECR Limits of LOFAR

Singh et al. (2008)

UHE Neutrino Limits

Singh et al. (2008)

Westerbork Synthesis Radio Telescope (WSRT) – NuMoon

WSRT Observations:

- PuMa II (pulsar) backend
- I 4 frequency bands between 113 and 175 MHz
- I sampling with 40 MHz
- RFI filtering
- I lonosphere correction
- 47.6 h observations

Future Radio Observations

10% SKA & current LOFAR

10% SKA & originally planned LOFAR

1 year original

1 year 10% SKA

LPM effect taken into account!

vMoon Collaboration: Scholten, Falcke, Singh, Buitink, Stappers, de Bruyn, Strom

KSP Organization

Main Groups

- RU Nijmegen, KVI Groningen
 - Association with FZ Karlsruhe theory group
 - Collaboration with LOPES and Radio@Auger groups
 - Open for further input ...
- Personpower
 - Currently: 4 staff, 2 PostDocs, 1 SW
 Developer
 - 2009: + 3 PhDs + 2 PostDoc + Developer

Cosmic Rays in the

vMoo n

S. Lafebre

The LOFAR CR KSP will ...

- … explore the fastest time scales in LOFAR (down to 5ns) and develop novel techniques in radio astronomy
 - Real-time triggering
 - I Transient Buffer-Board (TBB) utilization
 - 3D all-sky imaging on buffered data (1sec observation needs 1TB of data to be processed...)
 - I Transient signal extraction
- ... detect airshowers from UHECRs