Licentiate thesis defense

Licentiate Thesis: Quantum Random Access Codes and their Applications

by Alley Hameedi (Stockholm University, Department of Physics)

Europe/Stockholm
C5:1007

C5:1007

Description
Based on the principles of quantum mechanics, quantum information is a highly interesting and fast emerging field which refers to processing information encoded into the state of a quantum system and the subsequent use of such quantum systems for various information tasks. In this thesis, we have studied the role of single d-level quantum systems (qudits) as a quantum resource in the context of a communication task, commonly known as random access codes (RACs). We investigate the advantage of quantum random access codes (QRACs), employing quantum systems of arbitrary dimensions as means of communication between the parties, in terms of average performances over their classical counterparts. For this purpose, a class of QRACs with dimension d=4 is focused upon. Additionally, these higher dimensional QRACs have also been studied in terms of applications where we consider their potential in generation of true randomness. Furthermore, a parallel implementation of two parallel QRACs (employing qubits) is explored as a resource for test of non-classicality of a physical system. Our results obtained show that QRACs outperform their classical counterparts performance wise. Moreover, this advantage over classical resources can be extended further by use of higher dimensional QRACs. The high-level QRACs lead to higher average success probabilities and more generated randomness as compared to classical RACs or QRACs of lower dimensions. Finally, an experimental test of non-classicality is demonstrated which allows for arbitrarily low detection efficiencies and does not invoke extra assumptions as lack of shared randomness between devices.