Thesis defense

Licentiate Thesis: Resonant Inelastic X-ray Scattering. A computational contribution to studies of excited state dynamics.

by Jesper Norell (Stockholm University, Department of Physics)

Europe/Stockholm
FB55

FB55

Description
Absorption of light results on the molecular level in excited state dynamics: such as photochemical processes that can either damage or protect our DNA, and material functionalities which generate electricity in photovoltaic devices. Better understanding of such processes requires powerful experimental probes and accurate theoretical modeling. Resonant Inelastic X-ray Scattering combines the selectivity of x-ray radiation and time resolution of free-electron laser pulses with a rich information content, allowing us to follow ultrafast photo-induced chemical dynamics. However, the complexity of both the studied dynamics and that of the probe itself means that a theoretical description is in most cases strictly necessary. This thesis describes and applies Restricted Active Space Self-Consistent Field calculations, a quantum chemical method which can account for effects such as multi-configurational states, electron correlation, and relativistic spin-orbit coupling. The calculations are applied in two projects to observe excited state proton transfer in a biomolecule, and to follow charge transfer decay in a transition metal complex.