One of the current hot topics in galaxy evolution is the so-called Cosmic Reionization, the last major cosmic phase by which the Universe transitioned from a neutral to a (mostly) ionized state, happening around z = 6-9. The main responsible sources for reionization are still under debate, but star-forming galaxies seem to be the likeliest due to their high number density at early epochs respect to Active Galactic Nuclei.
However, directly probing ionizing (also called Lyman Continuum, LyC) radiation from galaxies at the Epoch of Reionization is difficult, since the escaping photons are likely absorbed by the remaining neutral gas in the intergalactic medium (IGM). Therefore, in order to study the role of star-forming galaxies during Reionization, we need to rely on indirect indicators of such emergent LyC radiation. The low-redshift Universe offers a unique window to study the properties of LyC-emitting galaxies, since the IGM attenuation is negligible and, at the same time, a full suite of multi-wavelength observations is available both from space and the ground.
Recent HST campaigns such as the Low-Redshift Lyman Continuum Survey (LzLCS) has nearly tripled the number of LyC detections at low-redshift. The LzLCS has revealed that compact star formation, high ionization parameters, strong and narrow LyA emission, low dust-attenuation and the presence of weak absorption lines seem to characterize the spectra of the strongest LyC emitters. In this talk, I will present some of the main results of the LzLCS and explain how this data set has changed our understanding of the mechanisms for LyC escape. We will also discuss the implications of these results for the high redshift community in the JWST era.