2–20 Mar 2015
Nordita, Stockholm
Europe/Stockholm timezone

From configuration to dynamics

10 Mar 2015, 09:20
45m
FB53 (Nordita, Stockholm)

FB53

Nordita, Stockholm

Speaker

Prof. Sjinji Mukohyama (Yukawa Institute for Theoretical Physics, Kyoto University)

Description

The Lorentzian metric structure used in any field theory allows one to implement the relativistic notion of causality and to define a notion of time dimension. In this talk we investigate the possibility that at the microscopic level the metric is Riemannian, i.e., locally Euclidean, and that the Lorentzian structure, that we usually consider as fundamental, is in fact an effective property that emerges in some regions of a four-dimensional space with a positive definite metric. In such a model, there is no dynamics nor signature flip across some hypersurface; instead, all the fields develop a Lorentzian dynamics in these regions because they propagate in an effective metric. It is shown that one can construct a decent classical field theory for scalars, vectors, and spinors in flat spacetime. It is then shown that gravity can be included but that the theory for the effective Lorentzian metric is not general relativity but of the covariant Galileon type. The constraints arising from stability, the equivalence principle, and the constancy of fundamental constants are detailed and a phenomenological picture of the emergence of the Lorentzian metric is also given. The construction, while restricted to classical fields in this article, offers a new view on the notion of time.

Presentation materials

There are no materials yet.