4–29 Sept 2017
Nordita, Stockholm
Europe/Stockholm timezone

Eigenselection and Quantum Thermodynamics

14 Sept 2017, 10:00
1h
122:026 (Nordita, Stockholm)

122:026

Nordita, Stockholm

Speaker

Ryoichi Kawai (University of Alabama at Birmingham)

Description

Thermodynamics of nano-sized systems interacting with environments must take into account quantum effects such as system-environment entanglement and environment-induced decoherence, in particular when the coupling with the environments is strong. In a typical thermodynamics scenario, a non-equilibrium system state relaxes to a unique equilibrium state (Gibbs state) whose density matrix is diagonal in the system energy eigenbasis, indicating that coherence among the energy eigenstates is entirely lost. It has been shown that such a kind of decoherence is limited to the weak coupling. When the coupling is strong, the system may reach a steady state where decoherence takes a place in different basis sets. The steady state may not be unique. The situation is even more complicated when the dynamics is not Markovian. Decoherence has been intensively investigated in other fields of physics, namely quantum measurement theory and quantum computing. In the present talk, I will attempt to relate some thermodynamic behaviors, such as relaxation, heat conduction, and heat engine, to such decoherence theory and demonstrate it using non-Markovian open quantum mechanics approach. Some purely quantum effects such as the disappearance of heat conduction due to quantum Zeno effect will be discussed.

Presentation materials

There are no materials yet.