Stochastic thermodynamics of measurement driven quantum systems: engines and refrigerators

16 Mar 2023, 10:15
45m
Lärosal 8 (Albano Building 2)

Lärosal 8

Albano Building 2

Speaker

Sreenath Kizhakkumpurath Manikandan (Stockholm University)

Description

Quantum measurements are inherently probabilistic, with the fluctuations associated to quantum information acquisition in the measurement problem. The measurement induced fluctuations, however, can be rectified to produce non-zero work even at zero temperature, in contrast to their classical counter part. In this talk, I will first present a fluctuation theorem which characterizes the measurement process in simple quantum systems. The fluctuation theorem demonstrates that quantum measurement is an absolutely irreversible process (analogous to the free expansion of a single gas particle in a box), where the degree of absolute irreversibility is deeply connected to the many-to-one mapping aspect of the quantum measurement problem. I will conclude by presenting some recent examples of quantum measurement fueled engines and refrigerators, and discussing the fundamental limits quantum measurement added noise impose on the parametric feedback cooling of a quantum oscillator.

Manikandan, Sreenath K., Cyril Elouard, Kater W. Murch, Alexia Auffèves, and Andrew N. Jordan. "Efficiently fueling a quantum engine with incompatible measurements." Physical Review E 105, no. 4 (2022): 044137.
Manikandan, Sreenath K., and Sofia Qvarfort. "Cooling through parametric modulations and phase-preserving quantum measurements." arXiv preprint arXiv:2204.00476 (2022).
Manikandan, Sreenath K., Cyril Elouard, and Andrew N. Jordan. "Fluctuation theorems for continuous quantum measurements and absolute irreversibility." Physical Review A 99, no. 2 (2019): 022117.
Jayaseelan, Maitreyi, Sreenath K Manikandan, Andrew N. Jordan, and Nicholas P. Bigelow. "Quantum measurement arrow of time and fluctuation relations for measuring spin of ultracold atoms." Nature communications 12, no. 1 (2021): 1-7.
Yanik, Kagan, Bibek Bhandari, Sreenath K. Manikandan, and Andrew N. Jordan. "Thermodynamics of quantum measurement and Maxwell's demon's arrow of time." Physical Review A 106, no. 4 (2022): 042221.

Presentation materials

There are no materials yet.