Angular dynamics of an ice crystal settling in a turbulent cloud

16 Apr 2021, 15:30
55m
Nordita

Nordita

Zoom

Speaker

Bernhard Mehlig (University of Gothenburg)

Description

Small non-spherical particles settling in a quiescent fluid tend to orient so that their broad side faces down, because this is a stable fixed point of their angular dynamics at small particle Reynolds number. Turbulence randomises the orientations to some extent, and this affects the reflection patterns of polarised light from turbulent clouds containing ice crystals. An overdamped theory predicts that turbulence-induced fluctuations of the orientation are very small when the settling number Sv (a dimensionless measure of the settling speed) is large. At small Sv, by contrast, the overdamped theory predicts that turbulence randomises the orientations. This overdamped theory neglects the effect of particle inertia. Therefore we consider here how particle inertia affects the orientation of small crystals settling in turbulent air. We find that it can significantly increase the orientation variance, even when the Stokes number St (a dimensionless measure of particle inertia) is quite small. We identify different asymptotic parameter regimes where the tilt-angle variance is proportional to different inverse powers of Sv. We estimate parameter values for ice crystals in turbulent clouds and show that they cover several of the identified regimes. The theory predicts how the degree of alignment depends on particle size, shape and turbulence intensity, and that the strong horizontal alignment of small crystals is only possible when the turbulent energy dissipation is weak, of the order of 1cm^2/s^3 or less.

Presentation materials

There are no materials yet.