Focus on:
All days
Mar 4, 2013
Mar 5, 2013
Mar 6, 2013
Mar 7, 2013
Mar 8, 2013
Mar 9, 2013
Mar 10, 2013
Mar 11, 2013
Mar 12, 2013
Mar 13, 2013
Mar 14, 2013
Mar 15, 2013
Indico style
Indico style - inline minutes
Indico style - numbered
Indico style - numbered + minutes
Indico Weeks View
Back to Conference View
Choose Timezone
Use the event/category timezone
Specify a timezone
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fort_Nelson
America/Fortaleza
America/Glace_Bay
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montserrat
America/Nassau
America/New_York
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Nuuk
America/Ojinaga
America/Panama
America/Pangnirtung
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Velho
America/Puerto_Rico
America/Punta_Arenas
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
America/Yellowknife
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Atyrau
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Barnaul
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Chita
Asia/Choibalsan
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Famagusta
Asia/Gaza
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kathmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qostanay
Asia/Qyzylorda
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Tomsk
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yangon
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney
Canada/Atlantic
Canada/Central
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Europe/Amsterdam
Europe/Andorra
Europe/Astrakhan
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kirov
Europe/Kyiv
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Saratov
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Ulyanovsk
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zurich
GMT
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kanton
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis
US/Alaska
US/Arizona
US/Central
US/Eastern
US/Hawaii
US/Mountain
US/Pacific
UTC
Save
Europe/Stockholm
English (United States)
Deutsch (Deutschland)
English (United Kingdom)
English (United States)
Español (España)
Français (France)
Polski (Polska)
Português (Brasil)
Türkçe (Türkiye)
Монгол (Монгол)
Українська (Україна)
中文 (中国)
Login
Stochastic Thermodynamics
from
Monday, March 4, 2013 (8:00 AM)
to
Friday, March 15, 2013 (6:00 PM)
Monday, March 4, 2013
10:00 AM
Small Systems: a challenge for the Statistical Mechanics
-
Angelo Vulpiani
(
Dep. of Physics, Universita Sapienza di Roma
)
Small Systems: a challenge for the Statistical Mechanics
Angelo Vulpiani
(
Dep. of Physics, Universita Sapienza di Roma
)
10:00 AM - 11:00 AM
Room: 132:028
The energy of a finite system thermally connected to a thermal reservoir may fluctuate, while the temperature is a constant representing a thermodynamic property of the reservoir. The finite system can also be used as a thermometer for the reservoir. From such a perspective the temperature has an uncertainty, which can be treated within the framework of estimation theory. We review the main results of this theory, and clarify some controversial issues regarding temperature fluctuations. We also offer a simple example of a thermometer with a small number of particles. We discuss the relevance of the total observation time, which must be much longer than the decorrelation time. In addition some preliminar results on partitioning systems will be discussed. Ref.s: M. Falcioni, D. Villamaina, A. Vulpiani, A. Puglisi and A. Sarracino "Estimate of temperature and its uncertainty in small systems" Am. J. Phys. 79, 777 (2011) E. DelRe, B. Crosignani, P. Di Porto and S. Di Sabatino "Built-in reduction of statistical fluctuations of partitioning objects" Phys. Rev. E 84, 021112 (2011)
3:00 PM
Stochastic thermodynamics of autonomous information machines: From Maxwell's demons to cellular sensing
-
Udo Seifert
(
Univ. Stuttgart
)
Stochastic thermodynamics of autonomous information machines: From Maxwell's demons to cellular sensing
Udo Seifert
(
Univ. Stuttgart
)
3:00 PM - 4:00 PM
Room: 132:028
The framework of stochastic thermodynamics can be applied to Brownian information machines for which information about the system acquired in a measurement is used to extract work from a single heat bath. Fluctuation theorems have been generalized to such feedback-driven non-autonomous machines following an almost standard recipe also allowing to discuss their efficiency and efficiency at maximum power. After briefly recalling this (reasonably well-understood) class, I will describe our recent work dealing with autonomous machines. First, I will discuss a fully stochastic, reversible variant of the demon recently introduced by Mandal and Jarzynski [PNAS 109, 11641, 2012]. Our generalization which includes genuine equilibrium allows to identify Onsager coefficients and the linear response theory of such a demon [1]. Second, within a minimal model for cellular sensing, I will discuss the relation between information-theoretic and thermodynamic entropy production. While one could naively expect the rate of information to be bounded by the thermodynamic cost of acquiring it, based on our new bound on the rate of mutual information for time-continuous processes, I will show that there is no such inequality [2]. [1] AC Barato and US, arXiv:1302.3089 [2] AC Barato, D. Hartich and US, arXiv:1212.3186
Tuesday, March 5, 2013
10:00 AM
Remarks on the Jarzynski and Crooks Theorems
-
E.G.D. Cohen
(
Rockefeller University
)
Remarks on the Jarzynski and Crooks Theorems
E.G.D. Cohen
(
Rockefeller University
)
10:00 AM - 11:00 AM
Room: 132:028
A discussion will be presented of the Jarzynski and Crooks Theorems and their relation to the stretching experiments of RNA in water.
3:00 PM
Fluctuation relation for weakly ergodic aging systems
-
Felix Ritort
(
Universitat de Barcelona
)
Fluctuation relation for weakly ergodic aging systems
Felix Ritort
(
Universitat de Barcelona
)
3:00 PM - 4:00 PM
Room: 132:028
A fluctuation relation for aging systems is introduced and verified by extensive numerical simulations. It is based on the hypothesis of partial equilibration over phase-space regions in a scenario of entropy-driven relaxation. The relation provides a simple alternative method, amenable of experimental implementation, to measure replica symmetry breaking parameters in aging systems. The connection with the effective temperatures obtained from the fluctuation-dissipation theorem is discussed.
Wednesday, March 6, 2013
10:00 AM
Stochastic thermodynamics for adiabatic pistons
-
Shin-ichi Sasa
(
Kyoto University
)
Stochastic thermodynamics for adiabatic pistons
Shin-ichi Sasa
(
Kyoto University
)
10:00 AM - 11:00 AM
Room: 132:028
Suppose that a box is divided into two regions by an adiabatic and movable wall, gases are confined in the two regions, and that the whole system is isolated. In this special setting, the equilibrium state is not determined from the variational principle of thermodynamics. To discuss phenomena in related settings is known as the adiabatic piston problem. In particular, various arguments in kinetic theory, mathematical physics, and non-equilibrium physics have been proposed since 1999 when Lieb presented the importance of the problem. Here, the understanding of fluctuation of the wall position plays an important role in the problem, and hence the thermodynamic argument should be developed on the basis of ``stochastic thermodynamics''. In my presentation, I carefully describe the heart of the problem. I then analyze a system under the condition that pressures and temperatures at the both ends are kept constant. I also address open questions, some of which might be expected to be solved in the workshop. (This work is done in collaboration with M. Itami.)
3:00 PM
On the heat flux and entropy produced by thermal fluctuations
-
Sergio Ciliberto
(
CNRS Ecole Normale Supérieure de Lyon
)
On the heat flux and entropy produced by thermal fluctuations
Sergio Ciliberto
(
CNRS Ecole Normale Supérieure de Lyon
)
3:00 PM - 4:00 PM
Room: 132:028
We report an experimental and theoretical analysis of the energy exchanged between two conductors kept at different temperature and coupled by the electric thermal noise. This system is probably the simplest example to test recent ideas of stochastic thermodynamics, but in spite of its simplicity the explanation of the observations is far from trivial. Experimentally we determine, as functions of the temperature difference, the heat flux, the out-of-equilibrium variance and a conservation law for the fluctuating entropy, which we justify theoretically. The system is ruled by the same equations of two Brownian particles kept at different temperatures and coupled by an elastic force. Our results set strong constrains on the energy exchanged between coupled nano-systems kept at different temperature
Thursday, March 7, 2013
10:00 AM
Macroscopic fluctuations in out of equilibrium systems with mean field interactions
-
Krzysztof Gawedzki
(
Ecole Normale de Lyon
)
Macroscopic fluctuations in out of equilibrium systems with mean field interactions
Krzysztof Gawedzki
(
Ecole Normale de Lyon
)
10:00 AM - 11:00 AM
Room: 132:028
I shall discuss the non-equilibrium Langevin dynamics of N identical systems with a mean field coupling, governed for N infinite by the non-linear Fokker-Planck equation. For large but finite N, the fluctuations around the solutions of that equation are described by the large deviation theory of the Rome school and may be controled analytically in perturbation theory.
3:00 PM
Stochastic Energetics with electrons in a circuit
-
Jukka Pekola
(
Aalto University School of Science
)
Stochastic Energetics with electrons in a circuit
Jukka Pekola
(
Aalto University School of Science
)
3:00 PM - 4:00 PM
Room: 132:028
I discuss distribution of dissipation, fluctuation theorems and Maxwell's demon in single-electron transport and in superconducting quantum circuits. Special emphasis is on experiments in nanocircuits and on experimentally feasible scenarios of testing quantum fluctuation relations.
Friday, March 8, 2013
10:00 AM
Finite Time Thermodynamics of Simple Model Systems
-
Katja Lindenberg
(
University of California
)
Finite Time Thermodynamics of Simple Model Systems
Katja Lindenberg
(
University of California
)
10:00 AM - 11:00 AM
Room: 132:028
A variety of simple model systems provide a theoretical testbed for a thorough characterization of the efficiency of operation of thermodynamic systems at maximum power (i.e., away from equilibrium) and also for the characterization of fluctuations in small thermodynamics systems in a non-equilibrium steady states. These models are particularly attractive because they can be explored analytically. Starting with idealized single quantum dot devices we will present a variety of such systems in a variety of operational modes. Our goal is to understand universal properties beyond the linear response regime.
2:00 PM
Jam Session
-
Aki Kutvonen
(
Aalto University
)
Natalia Golubeva
(
Aarhus University
)
Daniel Rings
(
University Leipzig
)
Arnab Pal
(
Raman Research Institute
)
Yohei Nakayama
(
University of Tokyo
)
Kyogo Kawaguchi
(
University of Tokyo
)
Takahiro Nemoto
(
Kyoto University
)
Jam Session
Aki Kutvonen
(
Aalto University
)
Natalia Golubeva
(
Aarhus University
)
Daniel Rings
(
University Leipzig
)
Arnab Pal
(
Raman Research Institute
)
Yohei Nakayama
(
University of Tokyo
)
Kyogo Kawaguchi
(
University of Tokyo
)
Takahiro Nemoto
(
Kyoto University
)
2:00 PM - 4:00 PM
Room: 132:028
Saturday, March 9, 2013
Sunday, March 10, 2013
Monday, March 11, 2013
10:00 AM
Stochastic Thermodynamics and Information Processing
-
Massimiliano Esposito
(
University of Luxembourg
)
Stochastic Thermodynamics and Information Processing
Massimiliano Esposito
(
University of Luxembourg
)
10:00 AM - 11:00 AM
Room: 132:028
I will start by presenting different ways in which one can use stochastic thermodynamics to characterize the cost of operations manipulating information. The main focus of my talk will be dedicated to explicitly show, using stochastic thermodynamics, in what sense a Maxwell demon effectively modifies the second law of thermodynamics and in what sense it satisfies the second law when the cost for operating the demon is taken into account. A model of coupled quantum dots will be used to illustrate my point.
3:00 PM
Carnot cycle for isothermal energy conversion
-
Bart Cleuren
(
Hasselt University
)
Carnot cycle for isothermal energy conversion
Bart Cleuren
(
Hasselt University
)
3:00 PM - 4:00 PM
Room: 132:028
Transforming one form of work into a different form can be done with 100% efficiency. This upper limit has no practical relevance since it requires a reversible operation and hence leads to a zero power output. In this talk I will consider a number of transformation processes and discuss the features of efficiency at maximum power output.
Tuesday, March 12, 2013
10:00 AM
Deterministic Approach to Nonequilibrium Physics: news from RareNoise
-
Paolo De Gregorio
(
INFN Padova
)
Lamberto Rondoni
(
Politecnico di Torino
)
Deterministic Approach to Nonequilibrium Physics: news from RareNoise
Paolo De Gregorio
(
INFN Padova
)
Lamberto Rondoni
(
Politecnico di Torino
)
10:00 AM - 11:00 AM
Room: 132:028
Twenty years ago, the molecular dynamics approach to nonequilibrium phenomena gave birth to a vast still growing wave of investigations, which has resulted in a number of works conceptually important in general, and of practical relevance especially in the mesoscopic realm. That wave has largely turned towards stochastic systems, considered easier to handle. We will outline recent results on non-equilibrium response, obtained from the deterministic (molecular dynamics/dynamical systems) perspective, which complements the stochastic perspective. Relaxation, response relations and optimal controlwill be considered, together with a new interpretation of nonquilibrium effective temperatures. These results raise some new questions on the use of ergodic theory in statistical mechanics.
3:00 PM
The entropic anomaly
-
Antonio Celani
(
CNRS - Institut Pasteur
)
The entropic anomaly
Antonio Celani
(
CNRS - Institut Pasteur
)
3:00 PM - 4:00 PM
Room: 132:028
Particle motion at the micro-scale is an incessant tug-of-war between thermal fluctuations and applied forces on one side, and the strong resistance exerted by fluid viscosity on the other. Friction is so strong that completely neglecting inertia – the overdamped approximation – gives an excellent effective description of the actual particle mechanics. In sharp contrast with this result, here we show that the overdamped approximation dramatically fails when thermodynamic quantities such as the entropy production in the environment is considered, in presence of temperature gradients. In the limit of vanishingly small, yet finite inertia, we find that the entropy production features a contribution that is anomalous, i.e. has no counterpart in the overdamped approximation. This phenomenon, that we call entropic anomaly, is due to a symmetry-breaking that occurs when moving to the small, finite inertia limit. As a consequence of this phenomenon, quasi-static engines, whose efficiency is maximal in a fluid at uniform temperature, have in fact vanishing efficiency in presence of temperature gradients. For slow cycles the efficiency falls off as the inverse of the period. The maximum efficiency is reached at a finite value of the cycle period that is inversely proportional to the square root of the gradient intensity. The relative loss in maximal efficiency with respect to the thermally homogeneous case grows as the square root of the gradient. As an illustration of these general results, we construct an explicit, analytically solvable example of a Carnot stochastic engine. In this thought experiment, a Brownian particle is confined by a harmonic trap and immersed in a fluid with a linear temperature profile. This example may serve as a template for the design of real experiments in which the effect of the entropic anomaly can be measured. Antonio Celani, Stefano Bo, Ralf Eichhorn, and Erik Aurell, Phys. Rev. Lett. 109, 260603 (2012) Stefano Bo and Antonio Celani, arXiv:1212.1608
Wednesday, March 13, 2013
10:00 AM
Adiabatic Piston and Momentum Deficit due to Dissipation: From Hydrodynamics Perspective
-
Ryoichi Kawai
(
University of Alabama at Birmingham
)
Adiabatic Piston and Momentum Deficit due to Dissipation: From Hydrodynamics Perspective
Ryoichi Kawai
(
University of Alabama at Birmingham
)
10:00 AM - 11:00 AM
Room: 132:028
A Brownian piston separating two gases of different temperature mediates heat transfer from one gas to the other via its velocity fluctuations. Such heat transfer is well understood at the Langevin theory. However, the gases in turn exert non-equilibrium force on the piston. Such a force is responsible for various intriguing non-equilibrium processes such as adiabatic piston and a certain types of Brownian motors. It has been shown that the standard linear Langevin theory fails to explain the force. The Master-Boltzmann approach beyond the Langevin description successfully predicted the force but it did not reveal the physical origin of the force. Recently, Freleux et al [PRL 108, 160601 (2012)] introduced the new concept of momentum deficit due to dissipation (MDD) and showed that it can explain the origin of the force with a few lines of calculation only based on the energy and momentum conservation laws. However, all previous theories including the MDD assume that the gas particles hitting the piston are taken from an equilibrium velocity distribution and outgoing particles disappears without colliding with the incoming particles. Since the outgoing particles are not in a thermal equilibrium due to dissipation, their collision with the incoming particles disturbs the velocity distribution of the incoming particles, invalidating the assumption used in the previous theories. Therefore, I would like to discuss the MDD from the hydrodynamics point of view. When a nonequilibrium steady state is established, we can show that the heat and momentum fluxes in the gases satisfy the MDD condition such that energy and momentum transport in hydrodynamics is consistent with the MDD theory of adiabatic piston.
3:00 PM
Stochastic modeling of weakly chaotic systems
-
Jorge Kurchan
(
LPS-Ecole Normale superieure
)
Stochastic modeling of weakly chaotic systems
Jorge Kurchan
(
LPS-Ecole Normale superieure
)
3:00 PM - 4:00 PM
Room: 132:028
Integrable systems become chaotic as soon as one perturbs them with an external, additive random noise. The Lyapunov exponents are a power law of the noise intensity. The regime being by nature beyond the Kolmogorov Arnold Moser (and also the Nekhoroshev) regimes, it offers us a glimpse of the behavior of weakly chaotic deterministic systems, in an multi-resonance situation.
Thursday, March 14, 2013
10:00 AM
Information motors vs chemical motors
-
Juan Parrondo
(
Universidad Complutense de Madrid
)
Information motors vs chemical motors
Juan Parrondo
(
Universidad Complutense de Madrid
)
10:00 AM - 11:00 AM
Room: 132:028
To induce transport, detailed balance must be broken. A common mechanism is to bias the dynamics with a thermodynamic fuel, such as chemical energy. An intriguing, alternative strategy is for a Maxwell demon to effect the bias using information and feedback. In this seminar I will review the thermodynamics of information and present two systems, a chemical motor and an information motor, exhibiting the same dynamical behavior but with very different thermodynamical properties. The analysis of these motors elucidates the manner in which information is incorporated into a physical system.
3:00 PM
Dissipation in simple non-equilibrium model systems
-
David Lacoste
(
ESPCI
)
Dissipation in simple non-equilibrium model systems
David Lacoste
(
ESPCI
)
3:00 PM - 4:00 PM
Room: 132:028
Stochastic thermodynamics is a framework for extending notions of classical thermodynamics to the level of individual trajectories which can be recorded in non-equilibrium conditions. While this framework is well established for stochastic systems described by markovian processes, the situation is less well understood when the strength of the noise depends on the driving or when non-markovian dynamics is involved. Such situations are not purely academic but arise in soft matter or biological systems. In the first part of the talk, I will present an experimental study of a model system made of magnetic colloidal particles which are manipulated using a time-dependent magnetic field. By recording the trajectories of the colloidal particles, the distributions of thermodynamic quantities such as work or heat can be obtained. This experiment is interesting because (i) it involves state dependent hydrodynamic friction and (ii) it can be carried out with more than one degree of freedom. In the second part of this talk, I will review a set of formal results which we obtained recently by generalizing the Hatano-Sasa relation to systems which have been prepared initially in a non-stationary non-equilibrium state. Such results include a generalized fluctuation-dissipation theorem and second-law like inequalities for non-equilibrium systems.
Friday, March 15, 2013
10:00 AM
Jam Session
Jam Session
10:00 AM - 12:30 PM
Room: 132:028