There are several computer packages such as HULLAC, FAC, AMBIT, GRASP, COWAN CODE for atomic structure calculations, each having their strengths and weaknesses [1-5]. Here we give an account for GRASP: theory, methodology, and issues of program handling [6,7]. Through a number examples, we discuss the applicability of GRASP for atomic systems of different complexity of relevance for...
With the recent detection of multiple neutron-star merger events, the need for a more comprehensive understanding of nuclear and atomic properties, as well as advanced astrophysical simulations, has become increasingly important to accurately predict r-process nucleosynthesis yields and electromagnetic signals when presented with observational data. The lack of atomic data has led to a number...
In 2017, the electromagnetic counterpart AT2017gfo to the binary neutron star merger GW170817 was observed by all major telescopes on Earth. While it was immediately clear that the transient following the merger event, is powered by the radioactive decay of r-process nuclei, only few tentative identifications of light r-process elements have been made so far. One of the major limitations for...
Modeling of the spectroscopic observations of kilonova rely on radiative data to have a good spectral coverage, being complete nad have a desired accuracy. Many of the r-process elements expected to be produced in kilonovas have very complex spectra, and thus a challenging task to provide accurate and large data sets for. Experimental data is sparce for these elements responsible for the...
Laser produced plasmas (LPPs) are key components for atomic and ionic spectroscopy. They act as sources of neutrals and ions, and of radiation to probe their structure.
Both emission and absorption spectroscopy are facilitated using LPPs. As part of the HEAVYMETAL project, the team at UCD will develop new configurations of LPPs to enhance, and perhaps optimise, populations of desired species....