April 26, 2011 to May 27, 2011
Nordita
Europe/Stockholm timezone

Systematic Strategies for Stochastic Climate Modeling

May 10, 2011, 1:30 PM
50m
132:028 (Nordita)

132:028

Nordita

Speaker

Dr Christian Franzke

Description

FRANZKE: Systematic Strategies for Stochastic Climate Modeling The climate system has a wide range of temporal and spatial scales for important physical processes. Examples include convective activity with an hourly time scale, organized synoptic scale weather systems on a daily time scale, extra-tropical low-frequency variability on a time scale of 10 days to months, to decadal time scales of the coupled atmosphere-ocean system. An understanding of the processes acting on different spatial and temporal scales is important since all these processes interact with each other due to the nonlinearities in the governing equations. Most of the current problems in understanding and predicting the climate system stem from the multi-scale nature of the climate system in that all of the above processes interact with each other and the neglect and/or misrepresentation of some of the processes lead to systematic biases of the resolved processes and uncertainties in the climate response. A better understanding of the multi-scale nature of the climate system will be crucial in making more accurate and reliable weather and climate predictions. In my presentation I will discuss systematic strategies to derive stochastic models for climate prediction. The stochastic mode reduction strategy accounts systematically for the effect of the unresolved degrees of freedom and predicts the functional form of the effective reduced equations. These procedures extend beyond simple Langevin equations with additive noise by predicting nonlinear effective equations with both additive and multiplicative (state-dependent) noises. The stochastic mode reduction strategy predicts rigorously closed form stochastic models for the slow variables in the limit of infinite separation of time-scales.

Presentation materials

There are no materials yet.