22 August 2011 to 16 September 2011
Europe/Stockholm timezone

Talk by Maria Richter: Photoelectron spectroscopy of the Kramers-Henneberger atom

31 Aug 2011, 10:00
1h

Description

Today laser pulses with electric fields comparable to or higher than the electrostatic forces binding valence electrons in atoms and molecules have become a routine tool with applications in laser acceleration of electrons and ions, generation of short wavelength emission from plasmas and clusters, laser fusion, etc. Intense fields are also naturally created during laser filamentation in the air or due to local field enhancements in the vicinity of metal nanoparticles. One would expect that very intense fields would always lead to fast ionization of atoms or molecules. However, recently observed acceleration of neutral atoms [1] at the rate of 1015 m/sec2 when exposed to very intense infrared (IR) laser pulses demonstrated that a substantial fraction of atoms remained stable during the pulse. What is the structure of these exotic laser-dressed atoms surviving super-atomic fields? Can it be directly imaged using modern experimental tools? Using ab-initio calculations for the potassium atom, we show [2] how the electronic structure of these stable "laser-dressed" atoms can be unambiguously identified and imaged in angle resolved photoelectron spectra obtained with standard femtosecond laser pulses and velocity map imaging techniques, see e.g. recent experiments [3,4]. We find that the electronic structure of these atoms follows the theoretical predictions made over 40 years ago by W. Henneberger [5], that have so far remained unconfirmed experimentally and thus not generally accepted. We also show that the so-called Kramers-Henneberger (KH) atom is formed and can be detected even before the onset of the stabilization regime. Our findings open the way for visualizing and controlling bound electron dynamics in strong laser fields and reexamining its role in various strong field processes, including the microscopic description of high order Kerr non-linearities and their role in laser filamentation [6]. 1. Eichmann et al., “Acceleration of neutral atoms in strong short-pulse laser fields”, Nature, 461, 1261-1264 (2009). 2. Felipe Morales, Maria Richter, Serguei Patchkovskii and Olga Smirnova, “Imaging the Kramers-Henneberger atom”, PNAS, accepted. 3. M. Wollenhaupt, M. Krug, J. Köhler, T. Bayer, C. Sarpe-Tudoran and T. Baumert, “Photoelectron angular distributions from strong-field coherent electronic excitation”, Appl. Phys. B, 95, 245 (2009). 4. M. Schuricke, G. Zhu, J. Steinmann, K. Simeonidis, I. Ivanov, A. Kheifets, A. N. Grum-Grzhimailo, K. Bartschat, A. Dorn and J. Ullrich, “ Strong-field ionization of lithium”, Phys. Rev. A, 83, 023413 (2011). 5. W. Henneberger, “Perturbation method for atoms in intense laser fields”, Phys. Rev. Lett., 21, 838 (1968). 6. Béjot et al., “Higher-Order Kerr Terms Allow Ionization-Free Filamentation in Gases”, Phys. Rev. Lett., 104, 103903 (2010).

Presentation materials

There are no materials yet.