14–18 Feb 2011
Wenner Gren Center
Europe/Stockholm timezone

Tyger phenomenon for the Galerkin-truncated Burgers and Euler equations

17 Feb 2011, 11:00
1h
Wenner-Gren Center, floor 7, Hörsalen (Wenner Gren Center)

Wenner-Gren Center, floor 7, Hörsalen

Wenner Gren Center

Sveavägen 164 SE-113 46 Stockholm Sweden

Speaker

Prof. Uriel Frisch

Description

It is shown that the solutions of inviscid hydrodynamical equations with suppression of all spatial Fourier modes having wavenumbers in excess of a threshold $\kg$ exhibit unexpected features. The study is carried out for both the one-dimensional Burgers equation and the two-dimensional incompressible Euler equation. At large $\kg$, for smooth initial conditions, the first symptom of truncation, a localized short-wavelength oscillation which we call a "tyger", is caused by a resonant interaction between fluid particle motion and truncation waves generated by small-scale features (shocks, layers with strong vorticity gradients, etc). These tygers appear when complex-space singularities come within one Galerkin wavelength $\lambdag = 2\pi/\kg$ from the real domain and typically arise far away from preexisting small-scale structures at locations whose velocities match that of such structures. Tygers are weak and strongly localized at first - in the Burgers case at the time of appearance of the first shock their amplitudes and widths are proportional to $\kg ^{-2/3}$ and $\kg ^{-1/3}$ respectively - but grow and eventually invade the whole flow. They are thus the first manifestations of the thermalization predicted by T.D. Lee in 1952. The sudden dissipative anomaly-the presence of a finite dissipation in the limit of vanishing viscosity after a finite time $\ts$-, which is well known for the Burgers equation and sometimes conjectured for the 3D Euler equation, has as counterpart in the truncated case the ability of tygers to store a finite amount of energy in the limit $\kg\to\infty$. This leads to Reynolds stresses acting on scales larger than the Galerkin wavelength and thus prevents the flow from converging to the inviscid-limit solution. There are indications that it may be possible to purge the tygers and thereby to recover the correct inviscid-limit behaviour. (Based on a paper by Samriddhi Sankar Ray, Uriel Frisch, Sergei Nazarenko and Takeshi Matsumoto, available at http://arxiv.org/abs/1011.1826)

Presentation materials

There are no materials yet.