14–18 Feb 2011
Wenner Gren Center
Europe/Stockholm timezone

Dynamo action in thermally unstable interstellar flows

15 Feb 2011, 09:30
30m
Wenner-Gren Center, floor 7, Hörsalen (Wenner Gren Center)

Wenner-Gren Center, floor 7, Hörsalen

Wenner Gren Center

Sveavägen 164 SE-113 46 Stockholm Sweden

Speaker

Prof. Maarit Mantere

Description

Numerous studies have investigated the role of thermal instability in regulating the phase transition between the cold cloudy and warm diffuse medium of the interstellar medium. Considerable interest has also been devoted in investigating the properties of turbulence in thermally usntable flows, special emphasis on molecular clouds and the possibility of star formation. In this study, we investigate another setting in which this instability may be important, namely its effect on dynamo action in interstellar flows. The setup we consider is a three dimensional periodic cube of gas with an initially weak magnetic field, subject to heating and cooling, the properties of which are such that thermal instability is provoked at certain temperature regime. Dynamo action is established through external forcing on the flow field. By comparing the results with a cooling function with exactly the same net effect but no thermally unstable regime, we find the following. The critical Reynolds number for the onset of the large-scale dynamo was observed to roughly double between the thermally stable versus unstable runs, the conclusion being that the thermal instability makes large-scale dynamo action more difficult. Whereas density and magnetic fields were observed to be almost completely uncorrelated in the thermally stable cases investigated, the action of thermal instability was observed to produce a positive correlation of the form B propto rho^0.2. This correlation is rather weak, and in addition it was observed to break down at the limit of the highest densities.

Presentation materials

There are no materials yet.