Speaker
Description
Optomechanical systems in the quantum regime allow us to probe quantum mechanics at the boundary between the microscopic and macroscopic; these systems are also promising candidates for precision sensors. By levitating an optomechanical system in an ion trap, we decouple it from its environment, a significant advantage for quantum applications.
Interferometric methods have been used in trapped-ion experiments for detecting mechanical motion at the level of single quanta [1]. We have recently adapted this approach for nanoparticles [2], and here, I will present experimental results on efficient position detection via self-interference. As an application, we cool a nanoparticle, via feedback, to temperatures below those achieved in the same setup using a standard position measurement. As an outlook, I will outline a route to the quantum regime and discuss the role that an atomic ion can play in enabling the preparation of nonclassical motional states of a nanoparticle.
[1] G. Cerchiari, G. Areneda, L. Podhora, L. Slodicka, Y. Colombe, and R. Blatt, Phys. Rev. Lett. 127, 063603 (2021)
[2] G. Cerchiari, L. Dania, D. S. Bykov, R. Blatt, and T. Northup, arXiv:2103.08322 (2021).